The October 2022 issue of IEEE Spectrum is here!

Close bar

Climbing Robot Tank Can Corner Like a Gecko

This dry-adhesion tankbot can transition from horizontal to vertical surfaces and back again

2 min read
Climbing Robot Tank Can Corner Like a Gecko

This is not the first sticky-treaded robotank, but as far as I know, it's the first one that can manage to go around corners and make that tricky transition from horizontal to vertical. The somewhat unfortunately named "Tailless Timing Belt Climbing Platform" (or TBCP-11) comes from Simon Frasier University way up there in Canada. It weighs 240 grams, and has no problems climbing up whiteboards, glass, and other slick surfaces.

The sticking power of those treads comes from the same handy little Van der Waals forces that geckos use to effortlessly stick to, well, everything. Instead of tiny hairs, though, TBCP-11 uses tiny mushrooms, which provide a substantial amount of conformable surface area for the robot to use to adhere to walls.

Maximizing compliant surface area has been an issue for gecko-type (aka dry-adhesion) climbing robots for a long time; the material itself is spectacular, but the tough part is getting enough of the material to make contact with your climbing surface. For example, check out the picture of Stickybot III's toes in this article, and notice how little of the adhesive the robot is relying on to stick. This is one of the advantages of the TBCP-11: the continuous loops of adhesive material provide a lot of adhesion power.

While this robot does have some autonomous capability, it's still tethered for power, since batteries are heavy. It's going to take a little extra work to increase the strength of the adhesive so that the TBCP-11 can bring its power source onboard, and the SFU researchers are also trying to figure out how to get the thing to turn without the treads coming loose and causing the TBCP-11 to plummet to its doom.

[ SFU ] via [ Vancouver Sun ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less