The December 2022 issue of IEEE Spectrum is here!

Close bar

Climbing Robot Squirts Honey On Its Feet For Sticking Power

Pretty sweet: this climbing robot uses a mixture of honey and water to help it stick to glass

1 min read
Climbing Robot Squirts Honey On Its Feet For Sticking Power

We've seen robots use a staggering variety of different techniques to climb things, and some of the most elegant (if not necessarily the most successful) are inspired by biology. Stanford's Stickybot is a good example of this, using nanoscale adhesive pads modeled on gecko feet to cling to smooth surfaces. But there are other animals that can stick to things even better than geckos can: our friends (and occasional enemies), the insects.

Insects climb in a couple different ways. On rough surfaces, they usually rely on small claws (kinda like Spinybot), but on smooth surfaces, some insects secrete an oily fluid to help turn pads on their feet into little suction cups of a sort. Minghe Li, a roboticist at Tongji University in Shanghai, has created a climbing robot that mimics this capability using pliable silicon feet that squirt out a mixture of honey and water onto the climbing surface.

It only takes a very little bit of liquid for the feet to stick, and while the robot currently can't climb slopes past 75 degrees, this method may ultimately prove to be as effective as the gecko-type sticky foot on smooth surfaces and more effective on rough or wet surfaces, which the gecko adhesive has trouble with. Also, making artificial gecko feet is tricky and expensive, while making honey just involves being nice to bees.

Li is currently adapting his robot's feet to better emulate those of insects to try to improve its climbing effectiveness. He's also, I imagine, looking for a way to clean up the sticky little footprints that are undoubtedly all over his lab.

Via [ New Scientist ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less