Climate Monster Found Lurking in Ocean Depths

Analysis of tiny creatures indicates drastically more heat storage in last 60 years

2 min read
Climate Monster Found Lurking in Ocean Depths

An article appearing in the November 1 issue of Science magazine analyzes mid-depth Pacific Ocean temperatures going back 10,000 years and finds a drastic increase in the amount of heat being absorbed and stored by ocean waters during the last 60 years. The study, by authors at Rutgers University, Columbia University's Lamont-Doherty Earth Observatory, and Woods Hole Oceanographic Insitution, reconstructs the history of temperatures in the western Pacific roughly 500-900 meters down through chemical analysis of shells from a species of single-celled organisms called foraminifers (or "forams").

The ratio of magnesium to calcium in the particular foramselected for study and found in ocean sediment cores, Hyalinea balthica, is a precise indicator of ambient temperature at the time the organism lived and died--a standard technique in paleoclimatology.

The three researchers found that the prevailing trend through most of the 10 000 year period was toward cooler temperatures. The cooling rate increased markedly during what's called the Little Ice Age of the European late Middle Ages, only to stop and reverse around the year 1600. After that the rate of Pacific warming was very gradual until about 60 years ago, when it leaped by a factor of 15. "Over a long time, the ocean's interior acts like a capacitor and builds up large (positive and negative) heat anomalies that reflect and, more importantly, affect the global climate," the article says.

There have been times in the ocean records that the three researchers compiled when water temperatures have been considerably higher than they are today, let it be said. The researchers emphasize the rate at which heat can be absorbed or ejected, and the big increase in the uptake rate during recent decades. “We may have underestimated the efficiency of the oceans as a storehouse for heat and energy,” commented Yair Rosenthal of Rutgers, the principal author of the study. “It [that heat storage] may buy us some time—how much time, I don't really know—to come to terms with climate change. But it's not going to stop climate change.”

The thinking is that storage of heat from a warming atmosphere represents a kind of lurking, growing monster that eventually will surface and return to the atmosphere.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less