The December 2022 issue of IEEE Spectrum is here!

Close bar

Chip Could Double Wireless Data Capacity

IC that transmits and receives on the same frequency could free up bandwidth in Wi-Fi and cellular networks

2 min read
Chip Could Double Wireless Data Capacity
The CoSMIC (Columbia high-Speed and Mm-wave IC) Lab full-duplex transceiver IC, which can enable simultaneous transmit and receive at the same frequency.
Photo: Jin Zhou and Harish Krishnaswam, Columbia Engineering

A new microchip could double the amount of data one can transmit and receive wirelessly by enabling simultaneous transmission and reception on the same radio frequency, engineers at Columbia University say.

This advance could not only improve portables and WiFi networks, "but this could also ease up the frequency spectrum as well," says Harish Krishnaswamy, an assitant professor of electrical engineering at Columbia University, in New York City.

Normally radio transmitters and receivers either work at different times or at the same time but on different frequencies. What so-called "full-duplex radios" instead try to do "is to transmit and receive at the same time and the same frequency," Krishnaswamy says. "This essentially can double the data capacity of a wireless network."

The biggest difficulty that full-duplex radios face is what is called transmitter echo or transmitter self-interference. "If you can imagine that a transmitter and receiver either share the same antenna or have two antennas very close to each other, the receiver mostly hears what the transmitter is transmitting," Krishnaswamy explains. "The signal from the transmitter can be anywhere from 1 billion to 1 trillion times more powerful than the signal you are trying to receive from whoever is trying to transmit to you from far away."

The new device, which they presented last month at the International Solid-State Circuits Conference, relies on canceling out transmitter echo. "The idea of echo cancellation is not new, but it's very challenging," Krishnaswamy says. "You're trying to cancel out a very powerful signal, and that signal can also bounce off the environment, so you have to account for how that signal might look reflected off nearby objects."

Past echo-cancellation technologies could be large and bulky. "Our innovation is to do it with an nano-scale integrated circuit that we have actually implemented in a CMOS microchip that can fit in a mobile device," he says.

The researchers developed an echo-cancellation system that relies on filters that can be dynamically reconfigured to account for how nearby objects in a changing environment might reflect signals. "We've shown that we can transmit and receive at the same time," Krishnaswamy says. "Now we're doing work to see if this can actually double network capacity. Network protocols will have to be redesigned—we have to see how exactly wirless networks behave when individual nodes can transmit and receive simultaneously."

The researchers are now working on testing their system with a Wi-Fi network. "We've gotten a lot of interest from significant players in the wireless space in development," Krishnaswamy says. 

The Conversation (0)

Why the Internet Needs the InterPlanetary File System

Peer-to-peer file sharing would make the Internet far more efficient

12 min read
Horizontal
An illustration of a series
Carl De Torres
LightBlue

When the COVID-19 pandemic erupted in early 2020, the world made an unprecedented shift to remote work. As a precaution, some Internet providers scaled back service levels temporarily, although that probably wasn’t necessary for countries in Asia, Europe, and North America, which were generally able to cope with the surge in demand caused by people teleworking (and binge-watching Netflix). That’s because most of their networks were overprovisioned, with more capacity than they usually need. But in countries without the same level of investment in network infrastructure, the picture was less rosy: Internet service providers (ISPs) in South Africa and Venezuela, for instance, reported significant strain.

But is overprovisioning the only way to ensure resilience? We don’t think so. To understand the alternative approach we’re championing, though, you first need to recall how the Internet works.

Keep Reading ↓Show less