IEEE.orgIEEE Xplore Digital LibraryIEEE StandardsMore Sites
      Sign InJoin IEEE
      Chris Harrison’s Time Machine
      Share
      FOR THE TECHNOLOGY INSIDER
      Explore by topic
      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation
      IEEE Spectrum
      FOR THE TECHNOLOGY INSIDER

      Topics

      AerospaceArtificial IntelligenceBiomedicalComputingConsumer ElectronicsEnergyHistory of TechnologyRoboticsSemiconductorsSensorsTelecommunicationsTransportation

      Sections

      FeaturesNewsOpinionCareersDIYThe Big PictureEngineering Resources

      More

      Special ReportsCollectionsExplainersPodcastsVideosNewslettersTop Programming LanguagesRobots Guide

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      For IEEE Members

      Current IssueMagazine ArchiveThe InstituteTI Archive

      IEEE Spectrum

      About UsContact UsReprints & PermissionsAdvertising

      Follow IEEE Spectrum

      Support IEEE Spectrum

      IEEE Spectrum is the flagship publication of the IEEE — the world’s largest professional organization devoted to engineering and applied sciences. Our articles, podcasts, and infographics inform our readers about developments in technology, engineering, and science.
      Join IEEE
      Subscribe
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.

      IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.

      view privacy policy accept & close

      Enjoy more free content and benefits by creating an account

      Saving articles to read later requires an IEEE Spectrum account

      The Institute content is only available for members

      Downloading full PDF issues is exclusive for IEEE Members

      Access to Spectrum's Digital Edition is exclusive for IEEE Members

      Following topics is a feature exclusive for IEEE Members

      Adding your response to an article requires an IEEE Spectrum account

      Create an account to access more content and features on IEEE Spectrum, including the ability to save articles to read later, download Spectrum Collections, and participate in conversations with readers and editors. For more exclusive content and features, consider Joining IEEE.

      Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, archives, PDF downloads, and other benefits. Learn more →

      CREATE AN ACCOUNTSIGN IN
      JOIN IEEESIGN IN
      Close

      Special offer: Join IEEE now for 2023 and save 50%!

      IEEE Members receive 12 print issues of IEEE Spectrum and enjoy PDF downloads, full access to our archive with thousands of in-depth articles, and other exclusive content and features. Join IEEE today for 2023 and save 50%!

      JOIN IEEE
      Consumer ElectronicsTopicTypeSpecial ReportsVideo

      Chris Harrison’s Time Machine

      The Future Interfaces Group conducts “time-machine research” by hacking together existing technologies

      Celia Gorman
      Ariel Bleicher
      09 Jun 2014
      Photo: Celia Gorman
      portable devicestype:videotouch screenshuman-computer interactionfuture technologiesFuture We Deservesmart watchsmart watchesChris Harrisonwearablesinterfacemachine learning

      The Future We Deserve report icon

      How will we interact with computers a decade or two from now? Could we manipulate digital objects with more than just our fingertips? Will screens become obsolete? Chris Harrison spends his days trying to answer these very questions. An assistant professor at Carnegie Mellon University, in Pittsburgh, he directs the Future Interfaces Group, an engineering playground where he and his students conduct what he calls “time-machine research.” By hacking or cobbling together existing technologies, they are exploring new, more expressive ways of communicating with machines.

      Among the group’s myriad inventions are a smart watch that wearers can manipulate mechanically, a light projector that turns any surface into a touch screen, and a tablet application that allows users to summon different digital tools, such as a pen or a magnifying glass, simply by changing how they touch the screen. Future computers could easily have such capabilities, Harrison says, although they almost certainly won’t look like anything we can imagine today. Decades before humans invented the airplane, he points out, people drew pictures of flying sailboats and bird-drawn carriages. “They got the concept right but the implementation wrong,” he says. And consumer electronics are no different. “When we envision possible future interfaces, we assemble them out of the things we know.”

      So who knows what must-have gadgets will exist in 2064? But whatever form they take, Harrison is certain that our interactions with them will be more natural and versatile—that is, more like our interactions in the real world.

      For more on the Harrison lab and other wearables research, see “Wearable Computers Will Transform Language.”

      Transcript:

      Chris Harrison: We probably have more processing power in this room, on this floor of this building, than the entire United States government did 20 years ago. Pretty obscene.

      We are here in a new lab space, which is called the Future Interfaces Group, where we make new interfaces and sensors to make the interactions between humans and computers better, more fluid, more natural, and more powerful. So one of the kind of styles of research that we do here in the lab is one you might call “time-machine research,” which is this notion that you kind of cobble together things that you can build today to kind of take a peek at what technologies might be like in 10 years’ time.

      And so what it does is it lets us ask the interesting questions about what’s going to be useful. So if we kind of glue this prototype together and build the experience, it may be a very expensive experience, but we can say, “Is this interesting? Is this useful?” And if it is interesting and useful, then that makes the case that we should actually build these devices and make them better. But until you actually build it, it’s often hard to know.

      So if you wanted to simulate what a smartphone is like 5 or 10 years from now, you’d put, you know, 20 smartphones or 20 computers in a closet, and instead run a little cable out to a small screen to simulate that processing power, because we don’t have any smartphones that are that powerful today. And so by doing this, and kind of cobbling together what we can barely do today, we can really kind of take a better understanding of what’s going to be possible and commercially feasible tomorrow. What might cost [US] $1,000 today will cost $100 in a couple years’ time.

      This notion of having interactivity everywhere is a wonderful concept. This is sort of why we put computers in our pockets, is we want to have computational capability, so information and information retrieval, communication, and so on, with us all the time.

      You can have kind of a personal display, kind of like a heads-up display that covers your eyes, and it augments your vision, or you can actually directly project onto the environment with projectors. What I really like about the second approach is that by having it embedded in the environment for everyone to see, not just yourself, you can have kind of a shared experience that everyone can participate in. So it’s not that I see something and you don’t, or I get an augmented experience that’s different than yours, is we can actually have something that we can all walk up to together, and I can see that you’re using an augmented surface as opposed to just a blank wall, and I can understand that you’re doing that. I can also understand if you’re interruptible, I can also come over and help and see what you’re doing and say, “Hey, what are you working on?”

      Humans like collaborating. We like walking up to things and grabbing whiteboard markers and working together, and I think there’s a danger of losing that if we go to totally virtual. So rather than just having it be a private augmented reality, I like this notion of having a physical—augmenting the real world around us and making that powerful.

      We also asked ourselves this question of, “Well, what does it mean to have tools in a digital medium?” You hold a hammer in a very particular way, or a camera, or scissors, and how you hold it gives you an affordance for using that tool. And so a lot of the research we’re looking at is how do you make touch screens have better modality by capturing more interesting and powerful dimensions of touch.

      It isn’t just a matter of pure computer science. There’s a design component. There’s a social-science component. There’s a cognitive-science component. And really, only if you understand all those things are you going to make something that’s truly awesome.

      NOTE: Transcripts are created for the convenience of our readers and listeners and may not perfectly match their associated interviews and narratives. The authoritative record of IEEE Spectrum’s video programming is the video.

      The Conversation (0)

      Trending Stories

      The most-read stories on IEEE Spectrum right now

      TransportationTopicMagazineTypeFeatureSpectrum Collections

      The EV Transition Is Harder Than Anyone Thinks

      SemiconductorsTopicTypeNews

      How and When the Chip Shortage Will End, in 4 Charts

      EnergyTopicNewsType

      Solid-State Battery Has 2x the Energy—and No Anode

      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Zoom Over Zanzibar With Tanzania’s Drone Startups

      Come along for the ride as drones soar over the farms and schools of Tanzania

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      09 May 2019
      6:56
      Photo: IEEE Spectrum
      dronesgadgetstype:videoEast Africa dronesmappingTanzaniaAfricadelivery drones360 video

      With 360-degree video, IEEE Spectrum puts you aboard drones that are flying high above the Tanzanian landscape: You’ll ride along as drones soar above farms, towns, and the blue expanse of Lake Victoria. You’ll also meet the local entrepreneurs who are creating a new industry, finding applications for their drones in land surveying and delivery. And you’ll get a close-up view from a bamboo grove as a drone pilot named Bornlove builds a flying machine from bamboo and other materials.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      RoboticsTopicTypeSpecial ReportsVideo

      360 Video: Go on a Mission With Zipline’s Delivery Drones

      Immerse yourself in the action as Zipline catapults its drones into the Rwandan sky

      Evan Ackerman

      Evan Ackerman is a senior editor at IEEE Spectrum. Since 2007, he has written over 6,000 articles on robotics and technology. He has a degree in Martian geology and is excellent at playing bagpipes.

      Michael Koziol

      Michael Koziol is an associate editor at IEEE Spectrum where he covers everything telecommunications. He graduated from Seattle University with bachelor's degrees in English and physics, and earned his master's degree in science journalism from New York University.

      Eliza Strickland

      Eliza Strickland is a senior editor at IEEE Spectrum, where she covers AI, biomedical engineering, and other topics. She holds a master’s degree in journalism from Columbia University.

      06 May 2019
      IEEE Spectrum
      dronestype:videoEast Africa dronesRwandadelivery dronesZipline360 video

      With 360 video, IEEE Spectrum takes you behind the scenes with one of the world’s first drone-delivery companies. Zipline, based in California, is using drones to deliver blood to hospitals throughout Rwanda. At an operations center in Muhanga, you’ll watch as Zipline technicians assemble the modular drones, fill their cargo holds, and launch them via catapult. You’ll see a package float down from the sky above a rural hospital, and you’ll get a closeup look at Zipline’s ingenious method for capturing returning drones.

      You can follow the action in a 360-degree video in three ways: 1) Watch on your computer, using your mouse to click and drag on the video; 2) watch on your phone, moving the phone around to change your view; or 3) watch on a VR headset for the full immersive experience.

      Keep Reading ↓Show less
      DIYTopicTypeVideo

      A Techie’s Tour of New York City

      Here are some NYC attractions that you won’t find in the guidebooks

      Stephen Cass

      Stephen Cass is the special projects editor at IEEE Spectrum. He currently helms Spectrum's Hands On column, and is also responsible for interactive projects such as the Top Programming Languages app. He has a bachelor's degree in experimental physics from Trinity College Dublin.

      17 Oct 2018
      A Techie's Tour Of NYC
      www.youtube.com
      type:videoNew York CityDIYtourismvideosrocketsNikola Teslahistorytechnologyeventshackerspacenew york citynikola teslanyc tourist videonyc tourist guidetech tour nycvideonyc tech tour

      Do your travel plans include New York City? Are you a techie? If the answer to those questions is yes, let IEEE Spectrum be your guide! We've put together a list of some of our favorite places to visit, including important locations in the history of electrotechnology (New York was once the center of the electrical and electronic world) and places where fun and interesting things are happening today. See where Nikola Tesla lived, check out cutting-edge artists working with technology, or take the kids to see an Atlas and Titan rocket.

      All the locations are accessible via the subway, and many are free to visit. If you do visit, take a selfie and post a link in the comments below.

      Keep Reading ↓Show less
      About IEEEContact & SupportAccessibilityNondiscrimination PolicyTermsIEEE Privacy Policy
      © Copyright 2023 IEEE — All rights reserved. A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity.