The December 2022 issue of IEEE Spectrum is here!

Close bar

China’s Ambitious Plan to Build the World’s Biggest Supergrid

A massive expansion leads to the first ultrahigh-voltage AC-DC power grid

11 min read
Photo: State Grid Corp. of China
Big Picture: This Beijing dispatch center controls most of China’s ultrahigh-voltage lines and monitors renewable energy use.
Photo: State Grid Corp. of China

Wind rips across an isolated utility station in northwestern China’s desolate Gansu Corridor. More than 2,000 years ago, Silk Road traders from Central Asia and Europe crossed this arid, narrow plain, threading between forbidding mountains to the south and the Gobi Desert to the north, bearing precious cargo bound for Imperial Beijing. Today the corridor carries a distinctly modern commodity: gigawatts of electricity destined for the megacities of eastern China. One waypoint on that journey is this ultrahigh-voltage (UHV) converter station outside the city of Jiuquan, in Gansu province.

Electricity from the region’s wind turbines, solar farms, and coal-fired power plants arrives at the station as alternating current. Two dozen 500-metric-ton transformers feed the AC into a cavernous hall, where AC-DC converter circuits hang from the 28-meter-high ceiling, emitting a penetrating, incessant buzz. Within each circuit, solid-state switches known as thyristors chew up the AC and spit it out as DC flowing at 800 kilovolts.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Dialing Down a Quantum Compute Glitch by 100,000x

A low-key solution to qubits’ cosmic ray problem

3 min read
Conceptual computer artwork of electronic circuitry contained within spheres against beams of light, representing how data may be controlled and stored in a quantum computer.
Mehau Kulyk/Science Source

The kind of quantum computers that IBM, Google and Amazon are building suffer catastrophic errors roughly once every 10 seconds due to cosmic rays from outer space. Now a new study reveals a way to reduce this error rate by nearly a half-million-fold to less than once per month.

Quantum computers theoretically can find answers to problems no regular computer might ever hope to solve. Their key ingredients, known as quantum bits, or qubits, are linked together by a quantum effect known as entanglement.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Deep Learning Gets a Boost From New Reconfigurable Processor

The ReAAP processor allows AI to be faster, more efficient

2 min read
different colored beams of light shooting up
iStock

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

Deep learning is a critical computing approach that is pushing the boundaries of technology – crunching immense amounts of data and uncovering subtle patterns that humans could never discern on their own. But for optimal performance, deep learning algorithms need to be supported with the right software compiler and hardware combinations. In particular, reconfigurable processors, which allow for flexible use of hardware resources for computing as needed, are key.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.