The December 2022 issue of IEEE Spectrum is here!

Close bar

China Unveils World's Largest Single-Dish Radio Telescope

The 500-meter-wide FAST telescope boasts greater sensitivity and a deformable mirror

2 min read
Arial photo of China's FAST telescope
Photo: Chinese Academy of Sciences

Move over, Arecibo. The title of “world’s largest single-dish radio telescope” now belongs to China’s Five-hundred-meter Aperture Spherical Telescope (FAST).

The telescope, which had its official launch on Sunday, has already received astrophysical signals, China’s press agency, Xinhua, reports. The almost 1.2-billion-yuan (US $180 million) project was spearheaded by the Chinese Academy of Sciences. 

Like the 305-meter-wide dish of the Arecibo Observatory in Puerto Rico, FAST consists of a spherical reflector dish that collects radio signals and focuses them onto the receiver system suspended above it. But FAST, which was built in a natural hollow in southern Guizhou province, also boasts an active reflector surface: Triangular panels that make up its dish can be moved to form a smaller, transient reflector, in order to focus and target different locations on the sky.

imgFAST’s dish can be deformed to target different areas of the sky. A subset of the mirror (left) can be used to create a parabolic surface (pink region, right).Bo Peng et al, Proceedings of the IEEE (Volume: 97, Issue: 8, Aug. 2009)

According to the FAST site, the telescope will have double the raw sensitivity of the Arecibo Observatory. Among other things, it is expected to be able to hunt for the universe’s first stars, search for signals from an extraterrestrial intelligence, and enable the detection of new pulsars—the spinning remnants of dead stars—in our galaxy and others.

For more of a visual feel for the telescope, Rebecca Morelle of the BBC did a nice video tour, published in May. 

Follow Rachel Courtland on Twitter at @rcourt.

The Conversation (0)
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.

NASA

For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}