China Unveils World's Largest Single-Dish Radio Telescope

The 500-meter-wide FAST telescope boasts greater sensitivity and a deformable mirror

2 min read
Arial photo of China's FAST telescope
Photo: Chinese Academy of Sciences

Move over, Arecibo. The title of “world’s largest single-dish radio telescope” now belongs to China’s Five-hundred-meter Aperture Spherical Telescope (FAST).

The telescope, which had its official launch on Sunday, has already received astrophysical signals, China’s press agency, Xinhua, reports. The almost 1.2-billion-yuan (US $180 million) project was spearheaded by the Chinese Academy of Sciences. 

Like the 305-meter-wide dish of the Arecibo Observatory in Puerto Rico, FAST consists of a spherical reflector dish that collects radio signals and focuses them onto the receiver system suspended above it. But FAST, which was built in a natural hollow in southern Guizhou province, also boasts an active reflector surface: Triangular panels that make up its dish can be moved to form a smaller, transient reflector, in order to focus and target different locations on the sky.

img FAST’s dish can be deformed to target different areas of the sky. A subset of the mirror (left) can be used to create a parabolic surface (pink region, right). Bo Peng et al, Proceedings of the IEEE (Volume: 97, Issue: 8, Aug. 2009)

According to the FAST site, the telescope will have double the raw sensitivity of the Arecibo Observatory. Among other things, it is expected to be able to hunt for the universe’s first stars, search for signals from an extraterrestrial intelligence, and enable the detection of new pulsars—the spinning remnants of dead stars—in our galaxy and others.

For more of a visual feel for the telescope, Rebecca Morelle of the BBC did a nice video tour, published in May. 

Follow Rachel Courtland on Twitter at @rcourt.

The Conversation (0)

​​Why the World’s Militaries Are Embracing 5G

To fight on tomorrow's more complicated battlefields, militaries must adapt commercial technologies

15 min read
4 large military vehicles on a dirt road. The third carries a red container box. Hovering above them in a blue sky is a large drone.

In August 2021, engineers from Lockheed and the U.S. Army demonstrated a flying 5G network, with base stations installed on multicopters, at the U.S. Army's Ground Vehicle Systems Center, in Michigan. Driverless military vehicles followed a human-driven truck at up to 50 kilometers per hour. Powerful processors on the multicopters shared the processing and communications chores needed to keep the vehicles in line.

Lockheed Martin

It's 2035, and the sun beats down on a vast desert coastline. A fighter jet takes off accompanied by four unpiloted aerial vehicles (UAVs) on a mission of reconnaissance and air support. A dozen special forces soldiers have moved into a town in hostile territory, to identify targets for an air strike on a weapons cache. Commanders need live visual evidence to correctly identify the targets for the strike and to minimize damage to surrounding buildings. The problem is that enemy jamming has blacked out the team's typical radio-frequency bands around the cache. Conventional, civilian bands are a no-go because they'd give away the team's position.

As the fighter jet and its automated wingmen cross into hostile territory, they are already sweeping the ground below with radio-frequency, infrared, and optical sensors to identify potential threats. On a helmet-mounted visor display, the pilot views icons on a map showing the movements of antiaircraft batteries and RF jammers, as well as the special forces and the locations of allied and enemy troops.

Keep Reading ↓ Show less