The August 2022 issue of IEEE Spectrum is here!

Close bar

Chernobyl’s Stressful After-Effects

The first clear scientific findings are more surprising than is generally appreciated, and their meaning is more obscure

22 min read
Chernobyl’s Stressful After-Effects

Photo: Sake Elzinga/IPD
View of Chernobyl Unit 4 was taken days after the accident of April 26, 1986. The force of the explosions that ripped the top off the reactor can be gauged from the bent-outward girders near the center.

The explosions and fires that wrecked the Chernobyl nuclear reactor 10 years ago last April brought on what is universally recognized as a catastrophe. Besides the immediate fatalities and human upheaval, which left hundreds of thousands disoriented, anxious about their own health, and bitterly concerned about their children, the accident inflicted incalculable material losses. In economic terms alone (though not in terms of casualties), Chernobyl was the greatest peacetime industrial disaster of all time. Its 10th anniversary was a fitting occasion for stocktaking—for determining what has been and has yet to be learned about the event, and for improving efforts to help the victims.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

New EV Prototype Leaves Range Anxiety in the Dust

Mercedes-Benz's Vision EQXX completed a record-breaking 747-mile run in May

5 min read
a silver car driving down the road with a mountain of switchbacks behind it

The Mercedes-Benz Vision EQXX

Mercedes-Benz

Not long ago, a 300-mile range seemed like a healthy target for electric cars. More recently, the 520-mile (837-kilometer) Lucid Air became the world’s longest-range EV. But that record may not stand for long.

The Mercedes-Benz Vision EQXX, and its showroom-bound tech, looks to banish range anxiety for good: In April, the sleek prototype sedan completed a 621-mile (1,000-kilometer) trek through the Alps from Mercedes’ Sindelfingen facility to the Côte d'Azur in Cassis, France with battery juice to spare. It built on that feat in late May, when the prototype covered a world-beating, bladder-busting 747 miles (1,202 kilometers) in a run from Germany to the Formula One circuit in Silverstone, U.K.

Keep Reading ↓Show less

Artificial Synapses 10,000x Faster Than Real Thing

New protonic programmable resistors may help speed learning in deep neural networks

3 min read
Conceptual illustration shows a brain shape made of circuits on a multilayered chip structure.
Ella Maru Studio and Murat Onen

New artificial versions of the neurons and synapses in the human brain are up to 1,000 times smaller than neurons and at least 10,000 times faster than biological synapses, a study now finds.

These new devices may help improve the speed at which the increasingly common and powerful artificial intelligence systems known as deep neural networks learn, researchers say.

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.