The December 2022 issue of IEEE Spectrum is here!

Close bar

Chef in a Box

In the kitchen of the future, a food compositor could fabricate haute cuisine from scratch

7 min read
Chef in a Box
Image: Dan Saelinger; Stylist: Dominique Baynes; Food Stylist: Carol Ladd

Have you seen a vending machine lately? Most are still pretty basic: Put in some cash and out comes a can or package. But the most advanced models have computer processors and touch-screen displays that let you customize your order to a remarkable degree. Touch-screen drink machines, for example, use a set of flavor cartridges to create more than a hundred soft drink combinations, be it Raspberry Coke or Peach Sprite Zero. The Let’s ­Pizza machine kneads the dough, spreads it with sauce, cheese, and your choice of toppings, and then bakes it under infrared lamps—all in less than 3 minutes. And ­MooBella’s Ice Creamery takes a mere 40 seconds to ­create a custom-blended dish of ice cream, with nearly 100 combinations of flavors and mix-ins.

Today’s high-tech vending machines are more than just novelties. They represent the beginning of what will eventually be a revolutionary shift in the way food is prepared. In this new food future, we predict, meals will be prepared not by human hands but by a “food ­compositor”: a machine that creates healthy, delectable, and affordable dishes from a set of basic ingredients and flavors at the push of a button. Imagine sitting down to a dinner worthy of a three-star Michelin restaurant for about what you’d pay today for a McDonald’s Happy Meal. And that meal will be catered to your specific tastes and health needs, with virtually no effort at all. Once food compositors become commonplace, the technology will lead to seismic changes in food production, storage, and distribution. Although that vision is at least 10 years away, researchers today are already prototyping the technologies that will make it possible [see sidebar, ­"Adventures in Printing Food"].

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Video Friday: Humanoid Soccer

Your weekly selection of awesome robot videos

4 min read
Humans and human-size humanoid robots stand together on an indoor soccer field at the beginning of a game

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND
ICRA 2023: 29 May–2 June 2023, LONDON

Enjoy today’s videos!

Keep Reading ↓Show less

Computing With Chemicals Makes Faster, Leaner AI

Battery-inspired artificial synapses are gaining ground

5 min read
Array of devices on a chip

This analog electrochemical memory (ECRAM) array provides a prototype for artificial synapses in AI training.

IBM research

How far away could an artificial brain be? Perhaps a very long way off still, but a working analogue to the essential element of the brain’s networks, the synapse, appears closer at hand now.

That’s because a device that draws inspiration from batteries now appears surprisingly well suited to run artificial neural networks. Called electrochemical RAM (ECRAM), it is giving traditional transistor-based AI an unexpected run for its money—and is quickly moving toward the head of the pack in the race to develop the perfect artificial synapse. Researchers recently reported a string of advances at this week’s IEEE International Electron Device Meeting (IEDM 2022) and elsewhere, including ECRAM devices that use less energy, hold memory longer, and take up less space.

Keep Reading ↓Show less

Get the Rohde & Schwarz EMI White Paper

Learn how to measure and reduce common mode electromagnetic interference (EMI) in electric drive installations

1 min read
Rohde & Schwarz

Nowadays, electric machines are often driven by power electronic converters. Even though the use of converters brings with it a variety of advantages, common mode (CM) signals are a frequent problem in many installations. Common mode voltages induced by the converter drive common mode currents damage the motor bearings over time and significantly reduce the lifetime of the drive.

Download this free whitepaper now!

Keep Reading ↓Show less