Chef in a Box

In the kitchen of the future, a food compositor could fabricate haute cuisine from scratch

7 min read
Chef in a Box
Image: Dan Saelinger; Stylist: Dominique Baynes; Food Stylist: Carol Ladd

Have you seen a vending machine lately? Most are still pretty basic: Put in some cash and out comes a can or package. But the most advanced models have computer processors and touch-screen displays that let you customize your order to a remarkable degree. Touch-screen drink machines, for example, use a set of flavor cartridges to create more than a hundred soft drink combinations, be it Raspberry Coke or Peach Sprite Zero. The Let’s ­Pizza machine kneads the dough, spreads it with sauce, cheese, and your choice of toppings, and then bakes it under infrared lamps—all in less than 3 minutes. And ­MooBella’s Ice Creamery takes a mere 40 seconds to ­create a custom-blended dish of ice cream, with nearly 100 combinations of flavors and mix-ins.

Today’s high-tech vending machines are more than just novelties. They represent the beginning of what will eventually be a revolutionary shift in the way food is prepared. In this new food future, we predict, meals will be prepared not by human hands but by a “food ­compositor”: a machine that creates healthy, delectable, and affordable dishes from a set of basic ingredients and flavors at the push of a button. Imagine sitting down to a dinner worthy of a three-star Michelin restaurant for about what you’d pay today for a McDonald’s Happy Meal. And that meal will be catered to your specific tastes and health needs, with virtually no effort at all. Once food compositors become commonplace, the technology will lead to seismic changes in food production, storage, and distribution. Although that vision is at least 10 years away, researchers today are already prototyping the technologies that will make it possible [see sidebar, ­“Adventures in Printing Food”].

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Mojo Vision Puts Its AR Contact Lens Into Its CEO’s Eyes (Literally)

With batteries on board and communicating wirelessly, the augmented reality contact lens reaches a major milestone

6 min read
closeup of eye with contact lens containing electronic components

Mojo Vision CEO Drew Perkins wears one of the company’s augmented reality contact lenses.

Mojo Vision

Editor’s note: In March, I looked through Mojo Vision’s AR contact lens—but I didn’t put it in my eye. At that point, while non-working prototypes had been tested for wearability, nobody had worn the fully functional, battery-powered, wirelessly communicating, device. Today, Mojo announced that its augmented reality lens had gone on-eye—specifically, on the eye of Mojo Vision CEO Drew Perkins, on 23 June.

“I’ve worn it. It works....and it was the first ever on eye demonstration of a feature complete augmented reality smart contact lens,” reported Perkins in a blog post. “The final technical hurdle to wearing the lens was ensuring that the power and radio communications systems worked without wires. Cutting the cord [proved] that the lens and all major components are fully functional and reduce many of the technical challenges in building a smart contact lens.”

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Explosive Power Beats Even Moore’s Law

The power of destructiveness is the most impressive metric of modern technology

2 min read
A photo of a nuclear explosion with islands in the foreground.

On 30 October 1961, the Soviet Union detonated the Tsar Bomba hydrogen bomb, which had the destructive power of 50 megatons of TNT, or 210 petajoules.

Alamy

The rising number of components on a microchip is the go-to example of roaring innovation. Intel’s first microprocessor, the 4004, released in 1971, had 2,300 transistors; half a century later the highest count surpasses 50 billion, for the Apple M1 Max—an increase of seven orders of magnitude. Most other technical advances have lagged behind: During the entire 20th century, maximum travel speeds rose less than tenfold, from about 100 kilometers per hour for express trains to 900 km/h for cruising jetliners. Skyscrapers got only 2.4 times as tall, from the Singer Building (187 meters) to the Petronas Towers (452 meters).

But there is one accomplishment that, unfortunately, has seen even higher gains since 1945: the destructive power of explosives.

Keep Reading ↓Show less

Free On-Demand Webinars on Data Acquisition Boards and Their Applications

Explore the basics of digitizers, pulse detection, peer-to-peer streaming, and more

1 min read

Dive into the world of digitizers and explore how they can benefit your application. Explore the basics of digitizers, pulse detection, peer-to-peer streaming, and more. Whether you are a scientist, engineer, student or if you want to know more about Teledyne SP Devices deep knowledge base there is something for everyone. Register now for these free webinars!