The July 2022 issue of IEEE Spectrum is here!

Close bar

China Will Attempt First Carbon-Neutral Winter Olympics

A variety of climate-friendly strategies will be on show, along with the athletes

4 min read
A photo of the interior of a large ice skating rink, with three skaters in the foreground

The National Speed Skating Oval (known as “The Ice Ribbon”) in Beijing will host speed skaters during the upcoming games. Ice here is formed using climate-friendly refrigeration. The facility also boasts outside architectural glass that includes photovoltaic elements, allowing the structure to generate electricity during the day.

Lintao Zhang/Getty Images

About 160 kilometers northwest of Beijing, the city of Zhangjiakou with its rugged terrain boasts some of the richest wind and solar resources in China. Renewables account for nearly half of the city’s electricity output with less than a third of its full solar and wind potential of 70 gigawatts installed so far.

That makes it an ideal cohost with Beijing for the 2022 Winter Olympic and Paralympic Games, which China plans to make the greenest yet. The plan is to power all 26 venues fully with renewables, marking a first in the games’ history.


The Beijing 2022 Organising Committee aims to make the games carbon neutral, or as close as possible—a benchmark for the International Olympic Committee’s mission to make the Olympics carbon positive by 2024.

Besides being a symbol for President Xi Jinping’s ambitious goal of China being carbon neutral by 2060, the 2022 games should drive sustainable development in the region. The event has already helped Beijing clean up its skies and environment, and has fired up local energy-technology markets. It will also be a global stage to showcase new energy-efficiency, alternate-transport, and refrigeration technologies.

The Olympics will account for only a small fraction of the country’s annual electricity consumption. Powering them with clean energy sources won’t be difficult given China’s plentiful renewable capacity, says Michael Davidson, an engineering-systems and global-policy expert at the University of California, San Diego.

But Davidson also points out that insufficient infrastructure to manage intermittent renewables and electricity-dispatch practices that don’t prioritize them mean that much of China’s green-power capacity is often not put to use. And because the game venues are connected to a grid that is powered by a variety of sources, asserting that all the electricity used at the games is 100 percent from clean energy sources is “complicated,” he says. Nonetheless, the games will be important in raising the profile of green energy. “The hope is that this process will put into place some institutions that could help leverage a much broader-scale move to green.”

The Games will offer a global stage to showcase new energy-efficiency, alternate-transport, and refrigeration technologies.

Case in point: The flexible DC grid put into place in Zhiangjiakou in 2020 will let 22.5 billion kilowatt-hours of wind and solar energy flow from Zhiangjiakou to Beijing every year. By the time the Paralympics end in March, the game venues are expected to have consumed about 400 million kWh of electricity. If all of it is indeed provided by renewables, that should reduce carbon emissions by 320,000 tonnes, according to sports outlet Inside the Games. After the athletes go home, the flexible DC grid will continue to clean up around 10 percent of the capital’s immense electricity consumption.

Green transport infrastructure being built to shuttle athletes and spectators between venues will also be part of the games’ lasting legacy. A clean energy–powered high-speed railway that takes 47 minutes to travel between Beijing and Zhangjiakou was inaugurated in 2019. More than 85 percent of public-transport vehicles at the Olympics will be powered by batteries, hydrogen fuel cells, or natural gas, according to state media.

In August, officials at the Chinese capital revealed a five-year hydrogen-energy plan, with goals to build 37 fueling stations and have about 3,000 fuel-cell vehicles on the road by 2023, for which the Olympics should also be a stepping-stone. Already, hydrogen fueling stations built by China’s petrochemical giant Sinopec, Pennsylvania-based Air Products, and French company Air Liquide have cropped up in Beijing, Zhiangjiakou, and the Yanqing competition zone located in between.

In Yanqing alone, 212 fuel-cell buses made by Beijing-based Beiqi Foton Motor Co. will shuttle spectators around. Even the iconic Olympic torch will burn hydrogen for its flame.

Even the iconic Olympic torch will burn hydrogen for its flame.

The 2022 event will also put a limelight on climate-friendly refrigeration. The immense 12,000-square-meter speed-skating oval in downtown Beijing—8 times the size of a hockey rink—will be the first in the world to use carbon dioxide for making ice.

“We’ve built skating rinks with carbon dioxide direct cooling but never a speed-skating oval,” says Wayne Dilk of Toronto-based refrigeration company CIMCO Refrigeration, which has built most of the National Hockey League arenas in North America and designed and provided consulting services for the Olympics’ icy venues.

Ice-rink technology typically relies on refrigerants siphoning heat away from brine circulated under the floors, Dilk explains. But CO2-based cooling systems, which are getting more popular mainly in Europe and North America for supermarkets, food-manufacturing plants, and ice rinks, use CO2 both as the refrigerant and for transporting heat away from under the floor where it is pumped in liquid form.

CO2 is a climate villain, of course, but conventional hydrofluorocarbon refrigerants are worse. The common R-22 form of Freon, for example, is about 1,800 times as potent as a greenhouse gas. CO2 cooling systems are also 30 percent more energy efficient than Freon, says Dilk. Plus, the CO2 system produces higher-temperature waste heat, which can be used for space heating and hot water. And while the system is more expensive to build because it runs at higher pressure, the temperature across the large surface stays within a range of only 0.5 °C, giving more uniform ice. Consistent temperature and ice quality generate better competitive racing times. The Beijing 2022 hockey arenas and sliding center for bobsled and luge use climate-friendly ammonia or Opteon as refrigerants. Besides being a key part of the greenest Winter Olympics, these state-of-the-art ice venues should seal the deal for another goal China has in 2022: to establish itself as a world-class winter sports and tourism destination.

This article appears in the January 2022 print issue as “China’s Green Winter Olympics .”

The Conversation (1)
Ben Wah30 Dec, 2021
INDV

Hmm, everyone knows china has shut it's manufacturing down months early for them to get a "blue sky" olympic. Their attempt is all for show. Looking at the locale of their venue is kinda funny. https://www.nbcolympics.com/news/beijing-2022-winter-olympics-competition-venues

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM’s quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner’s guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM’s publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or “qubits,” which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

This Wearable Neck Patch Can Diagnose Concussions

Self-powered sensors convert neck strain into electrical pulses to detect head trauma in athletes

4 min read
image of back of man's head and shoulders with a patch taped to his lower neck; right image is a time lapse image of a man's head extending far forward and back, simulating a case of whiplash

The prototype patch in this research is shown in (a) on the left; on the right (b) is the kind of head rotation that can yield an electrical response from the patch.

Juan Pastrana

Nelson Sepúlveda was sitting in the stands at Spartan Stadium, watching his hometown Michigan State players bash heads with their cross-state football rivals from the University of Michigan, when he had a scientific epiphany.

Perhaps the nanotechnologies he had been working on for years—paper-thin devices known as ferroelectret nanogenerators that convert mechanical energy into electrical energy—could help save these athletes from the ravages of traumatic brain injury.

Keep Reading ↓Show less

A Multiphysics Approach to Designing Fuel Cells for Electric Vehicles

White paper on fuel cell modeling and simulation

1 min read
Comsol Logo
Comsol

Fuel cell electric vehicles (FCEVs) often reach higher energy density and exhibit greater efficiency than battery EVs; however, they also have high manufacturing costs, limited service life, and relatively low power density.

Modeling and simulation can improve fuel cell design and optimize EV performance. Learn more in this white paper.