The December 2022 issue of IEEE Spectrum is here!

Close bar

Build Your Own Undersea Robot

With a remotely operated underwater vehicle, you can explore the depths without getting wet

6 min read


Last year at about this time, crews in the Gulf of Mexico were working feverishly to bring BP's blown-out oil well under control. Some of the more spectacular parts of that effort, as you may recall, involved the use of remotely operated vehicles, or ROVs. Perhaps you had the same thought as I did—that it would be cool to build one.

To be sure, no garage-workbench hacker is going to build an undersea robot that operates a diamond saw or wrestles with a stuck blowout preventer. But those vehicles also monitored events on the seafloor and streamed some amazing video to the Web in real time. A small inspection-class unit—one that carries just a video camera around underwater—ought to be within the grasp of an avid DIYer.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

From WinZips to Cat GIFs, Jacob Ziv’s Algorithms Have Powered Decades of Compression

The lossless-compression pioneer received the 2021 IEEE Medal of Honor

11 min read
Vertical
Photo of Jacob Ziv
Photo: Rami Shlush
Yellow

Lossless data compression seems a bit like a magic trick. Its cousin, lossy compression, is easier to comprehend. Lossy algorithms are used to get music into the popular MP3 format and turn a digital image into a standard JPEG file. They do this by selectively removing bits, taking what scientists know about the way we see and hear to determine which bits we'd least miss. But no one can make the case that the resulting file is a perfect replica of the original.

Not so with lossless data compression. Bits do disappear, making the data file dramatically smaller and thus easier to store and transmit. The important difference is that the bits reappear on command. It's as if the bits are rabbits in a magician's act, disappearing and then reappearing from inside a hat at the wave of a wand.

Keep Reading ↓Show less