Bubble Fusion Research Under Scrutiny

Purdue University scientist stands by his findings

5 min read

Scientists have long dreamed of tapping the power of nuclear fusion, the process that keeps stars burning. Today's best attempts, using magnetic fields in hugely expensive experimental reactors, are promising but so far have not yielded sizable amounts of energy on a sustained basis. So, in 2002, when researchers reported a new way of achieving fusion by imploding bubbles in a liquid, hopes ran high that the technique could somehow be scaled up eventually to provide an alternative way of generating electricity.

The researchers, led by Rusi P. Taleyarkhan, then at Oak Ridge National Laboratory, in Tennessee [see photo, " "], described in a 2002 paper in Science how they had blasted a glass flask filled with a liquid rich in deuterium, a hydrogen isotope, with high-frequency sound, creating pressure oscillations that imploded tiny bubbles in the liquid. The bubbles' violent collapse, the researchers believed, caused some of the deuterium to undergo fusion. Their novel method, dubbed bubble fusion or sonofusion, was controversial from the beginning, and so far no independent group has been able to replicate the experiment.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less