British Airways to Green Itself Up With Waste-to-Fuel Plant

London plant will make 16 million gallons of jet fuel per year.

2 min read
British Airways to Green Itself Up With Waste-to-Fuel Plant

Traditional biofuel processes have been slammed in recent years for their effects on land use and food prices, as well as apparently limited overall reductions in greenhouse gas emissions. Momentum has been growing, though, on some newer sources for biofuel production, like algae and solid waste.

Turning waste biomass into something useful could, if done on a large scale, potentially play a huge role in global warming mitigation. And now one of the biggest industry contributors - airlines - to the global emission of carbon dioxide is jumping on that bandwagon. British Airways will open a biofuel production plant in London that will convert 500,000 tonnes of waste that would otherwise head to a landfill each year into about 16 million gallons of jet fuel. The plan is in partnership with Solena Group, a Washington-based company that owns the process that will convert waste biomass into SynBioGas. From that, the Fischer-Tropsch process is used to produce bio jetfuel and bionaphtha (used as a blending component in gasoline and as a feedstock in petrochemical processes).

The airline promises that the plant itself will be carbon-neutral, and that the production and use of the biofuel in British Airway jets will save 550,000 tonnes of emitted carbon dioxide. For comparison, the airline itself calculated its carbon footprint in 2008 at 17,714,897 tonnes, so if these estimates are correct than the new plant represents about a 3 percent reduction. And at the same time, British Airways continues to stand behind plans for a third runway at Heathrow Airport, a plan that would increase the airport's capacity, probably resulting in many more carbon-spewing flights, and has drawn the ire of many who say it will be environmentally disastrous.

But the British Airways announcement highlights the current trend toward the development of biofuels for use in jets. Other than waste biomass, algae has shown the most promise for biofuel production, as it also does not supplant food crops like corn and can theoretically be carbon neutral. Whether or not other airlines follow suit immediately, chances seem good that jet fuel will be at least mildly more carbon-friendly in the near future.

Image: U.S. Navy via Wikimedia Commons.

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less