BP Closes Another Solar Manufacturing Plant

Ironcally, development shows how far photovoltaics has come, despite British Petroleum

1 min read

BP has announced it is closing its solar manufacturing operations in Frederick, Maryland, north of Washington, D.C. The striking thing about the news is that it's a mere local story, with the focus on the 320 workers who lose their jobs. The national press has ignored it, as have the specialized news sites and blogs that specialize in solar energy and green tech. 

BP acquired the Frederick plant in 1998 when it bought Amoco. A mere dozen years ago, believe it or not, that little factory was the largest or one of the largest photovoltaics manufacturing operations in the world. BP's acquisition of it seems to have partly or even largely inspired the company's decision to start styling itself as the world's largest solar manufacturer, to adopt an image of the sun as its corporate logo, and to launch a high-profile ad campaign in which it said it was moving "beyond petroleum." A mere two years later, as Spectrum pointed out a while back, it ditched production of the next-generation thin-film photovoltaic panels it had been developing, abandoning a key effort to finally make solar cells widely affordable--and raising doubts as to whether it would be moving beyond petroleum any time soon. Today, BP is not high on the list of the world's top photovoltaics makers.

BP will continue to employ about 100 people in research, sales and project development in Frederick, but the main foci of its solar development efforts are joint ventures in Bangalore, India, and Xian, China. Generally it has got out of producing PV materials, leaving that to subcontractors, and concentrates on integrating and selling systems.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less