The December 2022 issue of IEEE Spectrum is here!

Close bar

Born to Run

Could an 18-year-old double amputee perched on a pair of carbon-fiber springs have an edge over able-bodied athletes? Spectrum Online asked leading experts, and the answers are as different as they are surprising.

13 min read

The head of R&D on foot products at Iceland-based Ossur is audibly shaken in a phone interview as she ponders the implications of carbon-fiber sprinting prostheses that might one day help an amputee exceed normal human performance on the track.

As the person in charge of designing sports prosthetics for the world's leading manufacturer of "running feet," as disabled athletes call them, Heidrun Gigja Ragnarsdottir well knows just how far things could go, though the implications give her pause. A revolution in new materials, the ever-shrinking microprocessor, and the power of CAD design tools have all pushed the technology of prostheses, in the words of Massachusetts Institute of Technology engineer Hugh Herr, to the "threshold of a new age" [see sidebar, "Building a Better Leg"]. The bionic man--or at least a microprocessor-controlled bionic leg--is already a reality. But even in the realm of passive prostheses, which by definition do not produce energy but only store and release it, recent changes have made it possible for a lower-limb amputee to run faster than ever seemed imaginable.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
Vertical
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic
DarkGray

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}