Boeing’s Battery Blues

Despite fires in the 787’s lithium-ion batteries, planes will become more dependent on electricity and batteries

4 min read
Boeing’s Battery Blues
A Complex System: Boeing’s fuel-efficient 787 Dreamliner involved design input from many suppliers. The plane went to customers two years late.
Photo: Boeing

In January, regulators in Japan and the United States grounded the worldwide fleet of Boeing 787 Dreamliners after lithium-ion batteries caught fire in two of them—one in the air over Japan and the other on the ground in Boston. As IEEE Spectrum went to press, authorities were tracing the proximate cause of the Boston fire to a short-circuit in one of the batteries. The ultimate cause remained unclear. 

What is clear, though, is that lithium-ion batteries in commercial airliners are probably here to stay. Airliners are going to keep electrifying previously mechanical systems like those used for braking and de-icing, because doing so makes the aircraft much lighter and more efficient, says Cosmin Laslau, an electrochemistry expert and technology analyst for Lux Research.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
Two men fix metal rods to a gold-foiled satellite component in a warehouse/clean room environment

Technicians at Northrop Grumman Aerospace Systems facilities in Redondo Beach, Calif., work on a mockup of the JWST spacecraft bus—home of the observatory’s power, flight, data, and communications systems.


For a deep dive into the engineering behind the James Webb Space Telescope, see our collection of posts here.

When the James Webb Space Telescope (JWST) reveals its first images on 12 July, they will be the by-product of carefully crafted mirrors and scientific instruments. But all of its data-collecting prowess would be moot without the spacecraft’s communications subsystem.

The Webb’s comms aren’t flashy. Rather, the data and communication systems are designed to be incredibly, unquestionably dependable and reliable. And while some aspects of them are relatively new—it’s the first mission to use Ka-band frequencies for such high data rates so far from Earth, for example—above all else, JWST’s comms provide the foundation upon which JWST’s scientific endeavors sit.

Keep Reading ↓Show less