Automaton iconAutomaton

Sony's Toio robot cubes, console, and controller rings.

Sony Adds Toio Cubes to Its Arsenal of Strange Robotic Toys

From Sony, the company that brought you the amazing Aibo and the slightly less amazing Rolly, comes a new consumer robotic toy: Toio, a “toy platform” consisting of little robotic cubes on wheels. It’s much cuter and way more fun looking than it sounds, and could be just clever enough to keep kids interested for more than 5 minutes (a common problem with a lot of robotic toys).

Read More
Men's eight rowing final at the Rio 2016 Olympics.

Row Bots Test Whether Human Rowers Have Been Doing It Wrong

There are two different ways to row a boat with a bunch of oars. You can either do it synchronously, with everyone pulling all together and at the same time, or asynchronously, with rowers pulling in some sort of sequence, like a repeating wave. Nobody who knows what they’re doing with a boat (and this includes all of the Olympic rowing teams) ever does the asynchronous thing, and the assumption is that a rowing team that all pulls together is stronger and more efficient than a rowing team that pulls out of sync.

But here’s the thing: If you look at the hydrodynamics of a boat, a direct result of large speed variations is increased friction on the hull, and that means wasted energy compared to a boat propelled more steadily. With that in mind, French researchers decided to find out if rowing asynchronously might in fact be more efficient, and they have to put it to the test with a little racing boat filled with… wait for it… row bots.

Read More
Extra Pair of Robot Arms

Video Friday: Extra Robot Arms, Anti-Drone Drone, and Adorable TurtleBots

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next two months; here’s what we have so far (send us your events!):

NASA SRC Virtual Competition – June 12-16, 2017 – Online
ICCV 2017 – June 13-16, 2017 – Venice, Italy
RoboBoat 2017 – June 20-20, 2017 – Daytona Beach, Fl., USA
Aerial Robotics International Research Symposium – June 21-22, 2017 – Toronto, ON, Canada
Hamlyn Symposium on Medical Robotics – June 25-28, 2017 – London, England
Autonomous Systems World – June 26-27, 2017 – Berlin, Germany
RoboUniverse Seoul – June 28-30, 2017 – Seoul, Korea
RobotCraft 2017 – July 3-3, 2017 – Coimbra, Portugal
ICAR 2017 – July 10-12, 2017 – Hong Kong
RSS 2017 – July 12-16, 2017 – Cambridge, Mass., USA
MARSS – July 17-21, 2017 – Montreal, Canada
Summer School on Soft Manipulation – July 17-21, 2017 – Lake Chiemsee, Germany
Living Machines Conference – July 25-28, 2017 – Stanford, Calif., USA
RoboCup 2017 – July 27-31, 2017 – Nagoya, Japan

Let us know if you have suggestions for next week, and enjoy today’s videos.


Read More
SoftBank's massive robot collection now includes Pepper, Boston Dynamics' BigDog and Handle, Schaft's S-One, and many more.

SoftBank Acquires Boston Dynamics and Schaft

We knew that Masayoshi Son, founder and CEO of telecom giant SoftBank, loved robots. Now the Japanese billionaire is about to significantly expand his collection.

Minutes ago, SoftBank announced that it will be acquiring Boston Dynamics and Schaft from Google parent Alphabet for an undisclosed sum, in order to “collaborate in advancing the development of smart robotics technologies.”

Read More
Miniature Robotic Blimp.

Blimps Seem Like the Friendliest Kind of Indoor Flying Robots

Every time we go to a conference, we see flying robots that are getting smaller and more talented, capable of dynamically avoiding all sorts of obstacles, indoors and out. But that’s a lot of work. What’s less work is floating calmly through the air, without any concern for hurting people or running into things, or running out of battery: Such is the life of the gentle and slightly chubby Miniature Autonomous Blimp from Georgia Tech (GT-MAB), which can now detect faces and autonomously follow people around.

Read More
Senate Bill 2658 sheds light on how at least some people wanted to regulate drones

The Drone Rules That Never Became Law

The laws governing the use of drones in the United States are changing so fast it can be hard to keep up. But I’d like to explore here some proposed drone rules that never went into effect because the legislation that described them, Senate bill 2658 (the Federal Aviation Administration Reauthorization Act of 2016), was never passed.

Why care about rules that didn’t become law? It’s my theory that although the legislation died in Congress last year, the people championing various parts of it are still around and may yet influence future laws. So an examination of the ill-fated legislation could provide a window on what the future holds for drone operators.

Read More
Japan's space agency is developing a small robotic explorer that uses a single solid fuel rocket to launch itself into the air and some braking rockets to help it make pinpoint landings

A Rocket-Propelled Miniature Robot for Planetary Exploration

In terms of overall bang for your buck, solid-fuel rockets are pretty great: They’re dead simple, very reliable, and offer respectable efficiency in a very small form factor, as long as you’re prepared to handle a lot of thrust all at once and then never again. While some robots have attempted to use rockets to jump from place to place, controllability has always been an issue, since solid-fuel rockets give you a fixed amount of thrust whether you want it or not, and that thrust isn't always directed in exactly the way you'd like.
 
At ICRA last week, researchers from the Japan Aerospace Exploration Agency (JAXA) introduced a small robotic explorer that uses a single solid-fuel rocket to launch itself into the air. What’s new is that their robot includes some braking rockets that help it make pinpoint landings, as well as a clever gyroscopic system to make sure that it flies straight as well as providing a way for the robot to get around after landing.

Read More
Robot Adversaries for Learning Tasks

Robot Uses Evil Alter Ego to Learn Reliable Grasping

You know what’s really tedious and boring? Teaching robots to grasp a whole bunch of different kinds of objects. This is why roboticists have started to turn to AI strategies like self-supervised learning instead, where you let a robot gradually figure out on its own how to grasp things by trying slightly different techniques over and over again. Even with a big pile o’ robots, this takes a long time (thousands of robot-hours, at least), and while you can end up with a very nice generalized grasping framework at the end of it, that framework doesn’t have a very good idea of what a good grasp is.
 
The problem here is that most of the time, these techniques measure grasps in a binary-type fashion using very basic sensors: Was the object picked up and not dropped? If so, the grasp is declared a success. Real-world grasping doesn’t work exactly like that, as most humans can attest to: Just because it’s possible to pick something up and not drop it does not necessarily mean that the way you’re picking it up is the best way, or even a particularly good way. And unstable, barely functional grasps mean that dropping the object is significantly more likely, especially if anything unforeseen happens, a frustratingly common occurrence outside of robotics laboratories.

With this in mind, researchers from Carnegie Mellon University and Google decided to combine game theory and deep learning to make grasping better. Their idea was to introduce an adversary as part of the learning process—an “evil robot” that does its best to make otherwise acceptable grasps fail.

Read More
Robot Dance Teacher

Video Friday: Robot Dance Teacher, Transformer Drone, and Pneumatic Reel Actuator

The week is almost over, and so is the 2017 IEEE International Conference on Robotics and Automation (ICRA) in Singapore. We hope you’ve been enjoying our coverage, which has featured aquatic drones, stone-stacking manipulators, and self-folding soft robots. We’ll have lots more from the conference over the next few weeks, but for you impatient types, we’re cramming Video Friday this week with a special selection of ICRA videos.

We tried to include videos from many different subareas of robotics: control, vision, locomotion, machine learning, aerial vehicles, humanoids, actuators, manipulation, and human-robot interaction. We’re posting the abstracts along with the videos, but if you have any questions about these projects, let us know and we’ll get more details from the authors.

We’ll return to normal Video Friday next week. Have a great weekend everyone!

Read More
This aquatic drone has a clever mechanism that allows it to efficiently take off and land on water

Aquatic Fixed-Wing Drone Could Lake-Hop Across Canada

Fixed-wing drones are the way to go for efficient flying, but they pose challenges for long term autonomy because of how demanding they are when it comes to takeoffs and landings. You need a nice big flat area, and usually you need infrastructure support. A drone that needs to operate for days or weeks at a time completely on its own can’t rely on either, which means you need to get creative.

At ICRA this week, researchers from the University of Sherbrooke in Canada have gotten creative, and came up with a very clever design for a fixed wing drone called SUWAVE (Sherbrooke University Water-Air VEhicle) that uses lakes as landing pads. It crash lands in them, recharges with solar power, and then takes off again with a brilliant hinged propeller.

Read More
Advertisement

Automaton

IEEE Spectrum’s award-winning robotics blog, featuring news, articles, and videos on robots, humanoids, drones, automation, artificial intelligence, and more.
Contact us:  e.guizzo@ieee.org

Editor
Erico Guizzo
New York City
Senior Writer
Evan Ackerman
Washington, D.C.
 

Newsletter Sign Up

Sign up for the Automaton newsletter and get biweekly updates about robotics, automation, and AI, all delivered directly to your inbox.

Load More