Nano Devices Based on Block Copolymers Could Lead to Next Generation of Computing

Irish researchers characterization of block copolymers' self-assembly yields new chip manufacturing technique

1 min read

 

As far back as 2007 in the ITRS roadmap, the use of block copolymers has been targeted for reducing chip size. Since then they have been used to push the possibilities of self-assembled photoresists  as well as improve insulation within chips. 

During this period, researchers at CRANN, the nanoscience institute based at Trinity College Dublin—which partners with University College Cork (UCC)—along with researchers from the University of Wisconsin and Intel’s Researchers in Residence based in CRANN—namely, Professor Mick Morris of UCC—have been characterizing the block copolymer to better understand its self-assembling properties.

The results from the research, which were published in the journal Nanoscale, has demonstrated a method for fabricating large-area arrays of silicon nanowires through directed self-assembly of block copolymer nanopatterns that can be easily integrated into current manufacturing techniques.

In a press release issued by the Science Foundation of Ireland, Morris commented,  “The potential of our research is extremely exciting and reflects many years of hard work. This is the first time that anyone has demonstrated that large areas of nano-electronic devices can be developed in this fashion and highlights a pathway to commercial applications. I am looking forward to exploring commercial opportunities to further advance our work.”

Those associated with the project believe that the development could revolutionize the manufacturing of silicon chips and lead to a new generation of computers and real-time 3D video processing.

These types of claims are pretty regular in press releases covering this kind of research. In this case, however, given how deeply involved Intel was in the research one can’t help but give it a bit more credence than usual.

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less