Birth of the Bionic Eye

In 2012, electrodes will bring eyesight to the blind

3 min read
Photo: David Yellen
Seeing the Sights: Barbara Campbell’s retinal prosthesis sends 30 images per second to her optic nerve.
Photo: David Yellen

When light hits Barbara Campbell’s eyes, it triggers no response in her retinas, and no signals flash up her optic nerves to her brain. A genetic disease killed off her retinas’ photoreceptor cells, leaving her completely blind by her 30s. But where her body failed her, technology rescued her. In 2009, at the age of 56, Campbell had an array of electrodes implanted in each eye, and she now makes her way through the world more confidently, aided by bionic vision.

Her sight isn’t fully restored, not by a long shot, but the darkness has been replaced with rough shapes and patterns of light and dark. “The building where I live has a large light at the entranceway outside,” says Campbell, who lives in New York City. “I hadn’t been able to see that light in 16 years. Now, when I’m walking down the block, I can look up and identify the building.”

human os icon

The devices in Campbell’s eyes come from Second Sight Medical Products. After 13 years of product development, the company’s Argus II Retinal Prosthesis System is now hitting the market. In 2011 the company won regulatory approval in Europe [PDF], and eye surgeons there are just beginning to perform the implants. This year the Los Angeles–based company hopes to get approval from the U.S. Food and Drug Administration as well. “I didn’t think it would take this long,” says CEO Robert Greenberg, “but it’s finally real.”

The process that allows the blind to see starts with a pair of sunglasses, which sport a tiny video camera mounted in the bridge just above the nose. The camera captures an image and sends it down a wire to a visual processing unit hanging on the patient’s belt. That VPU—which is a little larger than a smartphone—­converts the world’s complexities into a 60-pixel image in black and white, which it sends back to transponders on the glasses. From there the image goes wirelessly to antennas wrapped around the sides of the eyeballs, and from there to the 60-electrode arrays that are tacked to the delicate retinas.

The Argus II system can’t help all blind people, only those with degenera­tion of the retina’s photoreceptor cells. The electrodes take the place of those damaged photoreceptors and stimulate the cells that are attached to the optic nerve. So far, Second Sight has concentrated on patients with ­retinitis pigmentosa—the disease Campbell has—but the company’s device may also help with macular degeneration. Greenberg says that about 200 000 people in the United States and Europe could benefit from the implants.

Campbell was a volunteer in the second round of clinical trials. Her doctor, Lucian Del Priore, explains that patients need training to get the technology’s full benefits. At first the medical team directly stimulates the electrodes. Says Del Priore: “We electronically project an image of a square onto the retina, and say, ‘What does that look like?’ And the patient says, ‘It looks like an amoeba.’ ” The technicians have to compensate for differences in the distance between each electrode and the retina, Del Priore explains. “The distances have to be balanced, like balancing your stereo system.”

Once the training and the balancing are done, however, patients gain a crude kind of vision—enough to make out doorways, the crosswalk on a street, the brightness of a face turned toward them. “We’re not providing normal vision,” says Greenberg. “We’re providing cues and clues to help people navigate the world.”

Second Sight’s engineers are already thinking about their next move. Greenberg says a device with more electrodes (and thus more pixels) is likely, but adds that patients’ vision can also be improved by using software tricks in the visual processing unit. The company is already experimenting with color vision.

“We’ve produced blues and oranges and yellows repeatedly,” Greenberg says. “Blues seem to be the most emotionally rewarding. Almost universally, patients say, ‘Please, show me that again.’ ”

This article originally appeared in print as “Future Vision.”

The Conversation (0)

Will This Jetpack Fly Itself?

Startup aims to make piloting a jetpack as easy as flying a drone

3 min read

Maverick Aviation CTO Matt Denton (left) and CEO Antony Quinn

University of Southampton Science Park

Jetpacks might sound fun, but learning how to control a pair of jet engines strapped to your back is no easy feat. Now a British startup wants to simplify things by developing a jetpack with an autopilot system that makes operating it more like controlling a high-end drone than learning how to fly.

Jetpacks made the leap from sci-fi to the real world as far back as the 1960s, but since then the they haven't found much use outside of gimmicky appearances in movies and halftime shows. In recent years though, the idea has received renewed interest. And its proponents are keen to show that the technology is no longer just for stuntmen and may even have practical applications.

Keep Reading ↓ Show less

DARPA SubT Final: How It Works and How to Watch

Get the all details on schedule, scoring, and streaming

5 min read

The preliminary rounds of the DARPA Subterranean Challenge Finals are kicking off today. It's been a little bit since the last DARPA SubT event—the Urban Circuit squeaked through right before the pandemic hit back in February of 2020, and the in-person Cave Circuit originally scheduled for later that year was canceled.

So if it's been a while since you've thought about SubT, this article will provide a very brief refresher, and we'll also go through different ways in which you can follow along with the action over the course of the week.

Keep Reading ↓ Show less

Help Build the Future of Assistive Technology

Empower those in need with a master’s degree in assistive technology engineering

4 min read

This article is sponsored by California State University, Northridge (CSUN).

Your smartphone is getting smarter. Your car is driving itself. And your watch tells you when to breathe. That, as strange as it might sound, is the world we live in. Just look around you. Almost every day, there's a better or more convenient version of the latest gadget, device, or software. And that's only on the commercial end. The medical and rehabilitative tech is equally impressive — and arguably far more important. Because for those with disabilities, assistive technologies mean more than convenience. They mean freedom.

So, what is an assistive technology (AT), and who designs it? The term might be new to you, but you're undoubtedly aware of many: hearing aids, prosthetics, speech-recognition software (Hey, Siri), even the touch screen you use each day on your cell phone. They're all assistive technologies. AT, in its most basic form, is anything that helps a person achieve enhanced performance, improved function, or accelerated access to information. A car lets you travel faster than walking; a computer lets you process data at an inhuman speed; and a search engine lets you easily find information.

Keep Reading ↓ Show less

Trending Stories

The most-read stories on IEEE Spectrum right now