Birth of the Bionic Eye

In 2012, electrodes will bring eyesight to the blind

3 min read
Photo: David Yellen
Seeing the Sights: Barbara Campbell’s retinal prosthesis sends 30 images per second to her optic nerve.
Photo: David Yellen

When light hits Barbara Campbell’s eyes, it triggers no response in her retinas, and no signals flash up her optic nerves to her brain. A genetic disease killed off her retinas’ photoreceptor cells, leaving her completely blind by her 30s. But where her body failed her, technology rescued her. In 2009, at the age of 56, Campbell had an array of electrodes implanted in each eye, and she now makes her way through the world more confidently, aided by bionic vision.

Her sight isn’t fully restored, not by a long shot, but the darkness has been replaced with rough shapes and patterns of light and dark. “The building where I live has a large light at the entranceway outside,” says Campbell, who lives in New York City. “I hadn’t been able to see that light in 16 years. Now, when I’m walking down the block, I can look up and identify the building.”

human os icon

The devices in Campbell’s eyes come from Second Sight Medical Products. After 13 years of product development, the company’s Argus II Retinal Prosthesis System is now hitting the market. In 2011 the company won regulatory approval in Europe [PDF], and eye surgeons there are just beginning to perform the implants. This year the Los Angeles–based company hopes to get approval from the U.S. Food and Drug Administration as well. “I didn’t think it would take this long,” says CEO Robert Greenberg, “but it’s finally real.”

The process that allows the blind to see starts with a pair of sunglasses, which sport a tiny video camera mounted in the bridge just above the nose. The camera captures an image and sends it down a wire to a visual processing unit hanging on the patient’s belt. That VPU—which is a little larger than a smartphone—­converts the world’s complexities into a 60-pixel image in black and white, which it sends back to transponders on the glasses. From there the image goes wirelessly to antennas wrapped around the sides of the eyeballs, and from there to the 60-electrode arrays that are tacked to the delicate retinas.

The Argus II system can’t help all blind people, only those with degenera­tion of the retina’s photoreceptor cells. The electrodes take the place of those damaged photoreceptors and stimulate the cells that are attached to the optic nerve. So far, Second Sight has concentrated on patients with ­retinitis pigmentosa—the disease Campbell has—but the company’s device may also help with macular degeneration. Greenberg says that about 200 000 people in the United States and Europe could benefit from the implants.

Campbell was a volunteer in the second round of clinical trials. Her doctor, Lucian Del Priore, explains that patients need training to get the technology’s full benefits. At first the medical team directly stimulates the electrodes. Says Del Priore: “We electronically project an image of a square onto the retina, and say, ‘What does that look like?’ And the patient says, ‘It looks like an amoeba.’ ” The technicians have to compensate for differences in the distance between each electrode and the retina, Del Priore explains. “The distances have to be balanced, like balancing your stereo system.”

Once the training and the balancing are done, however, patients gain a crude kind of vision—enough to make out doorways, the crosswalk on a street, the brightness of a face turned toward them. “We’re not providing normal vision,” says Greenberg. “We’re providing cues and clues to help people navigate the world.”

Second Sight’s engineers are already thinking about their next move. Greenberg says a device with more electrodes (and thus more pixels) is likely, but adds that patients’ vision can also be improved by using software tricks in the visual processing unit. The company is already experimenting with color vision.

“We’ve produced blues and oranges and yellows repeatedly,” Greenberg says. “Blues seem to be the most emotionally rewarding. Almost universally, patients say, ‘Please, show me that again.’ ”

This article originally appeared in print as “Future Vision.”

The Conversation (0)

Q&A With Co-Creator of the 6502 Processor

Bill Mensch on the microprocessor that powered the Atari 2600 and Commodore 64

5 min read
Bill Mensch

Few people have seen their handiwork influence the world more than Bill Mensch. He helped create the legendary 8-bit 6502 microprocessor, launched in 1975, which was the heart of groundbreaking systems including the Atari 2600, Apple II, and Commodore 64. Mensch also created the VIA 65C22 input/output chip—noted for its rich features and which was crucial to the 6502's overall popularity—and the second-generation 65C816, a 16-bit processor that powered machines such as the Apple IIGS, and the Super Nintendo console.

Many of the 65x series of chips are still in production. The processors and their variants are used as microcontrollers in commercial products, and they remain popular among hobbyists who build home-brewed computers. The surge of interest in retrocomputing has led to folks once again swapping tips on how to write polished games using the 6502 assembly code, with new titles being released for the Atari, BBC Micro, and other machines.

Keep Reading ↓ Show less

Spot’s 3.0 Update Adds Increased Autonomy, New Door Tricks

Boston Dynamics' Spot can now handle push-bar doors and dynamically replan in complex environments

5 min read
Boston Dynamics

While Boston Dynamics' Atlas humanoid spends its time learning how to dance and do parkour, the company's Spot quadruped is quietly getting much better at doing useful, valuable tasks in commercial environments. Solving tasks like dynamic path planning and door manipulation in a way that's robust enough that someone can buy your robot and not regret it is, I would argue, just as difficult (if not more difficult) as getting a robot to do a backflip.

With a short blog post today, Boston Dynamics is announcing Spot Release 3.0, representing more than a year of software improvements over Release 2.0 that we covered back in May of 2020. The highlights of Release 3.0 include autonomous dynamic replanning, cloud integration, some clever camera tricks, and a new ability to handle push-bar doors, and earlier today, we spoke with Spot Chief Engineer at Boston Dynamics Zachary Jackowski to learn more about what Spot's been up to.

Keep Reading ↓ Show less

Help Build the Future of Assistive Technology

Empower those in need with a master’s degree in assistive technology engineering

4 min read

Students in the CSUN Assistive Technology Engineering program work on projects that involve robotics, artificial intelligence, and neuroscience.

California State University, Northridge (CSUN)

This article is sponsored by California State University, Northridge (CSUN).

Your smartphone is getting smarter. Your car is driving itself. And your watch tells you when to breathe. That, as strange as it might sound, is the world we live in. Just look around you. Almost every day, there's a better or more convenient version of the latest gadget, device, or software. And that's only on the commercial end. The medical and rehabilitative tech is equally impressive — and arguably far more important. Because for those with disabilities, assistive technologies mean more than convenience. They mean freedom.

So, what is an assistive technology (AT), and who designs it? The term might be new to you, but you're undoubtedly aware of many: hearing aids, prosthetics, speech-recognition software (Hey, Siri), even the touch screen you use each day on your cell phone. They're all assistive technologies. AT, in its most basic form, is anything that helps a person achieve enhanced performance, improved function, or accelerated access to information. A car lets you travel faster than walking; a computer lets you process data at an inhuman speed; and a search engine lets you easily find information.

Keep Reading ↓ Show less

Trending Stories

The most-read stories on IEEE Spectrum right now