The December 2022 issue of IEEE Spectrum is here!

Close bar

Robo-Ostrich Sprints to 100-meter World Record

Oregon State University’s Cassie is fastest bipedal robot ever to run the 100-meter dash

2 min read
A robot with two orange ostrich-like legs and no torso sprints along a running track

For a robot that shares a leg design with the fastest-running bird on the planet, we haven’t ever really gotten a sense of how fast Agility Robotics’ Cassie is actually able to move. Oregon State University’s Cassie successfully ran a 5k last year, but it was the sort of gait that we’ve come to expect from humanoid robots—more of a jog, really, with measured steps that didn’t inspire a lot of confidence in higher speeds. Turns out, Cassie was just holding back, because she’s just sprinted her way to a Guinness World Record for fastest 100-meter run by a bipedal robot.


Cassie’s average speed was just over 4 meters per second, completing the 100 meters in 24.73 seconds. And for a conventional1 bipedal robot, that is fast. Moreover, her top speed was certainly higher than 4 m/s, since the record attempt required a standing start (along with a return to the starting point without falling over). This is also by far the most ostrichlike I’ve ever seen Cassie move, with a springy birdlike gait. With a feathery costume on, the robot would be a dead ringer for the real bird, and it would give Cassie something to aspire to, since a real ostrich can run the 100-meter in 5 seconds flat.

This was not an autonomous run, since this version of Cassie has no external sensors, and there was a human with a remote doing the steering. OSU’s Dynamic Robotics Laboratory has been working on this kind of dynamic movement for a while, but the sprinting in particular required some extra training in the form of gait optimization in simulation. And according to the researchers, one of the most difficult challenges was actually getting Cassie to reach a sprint from a standing start and then slow down to a stop on the other end without borking herself.

“This may be the first bipedal robot to learn to run, but it won’t be the last,” Agility Robotics’ Jonathan Hurst said. “I believe control approaches like this are going to be a huge part of the future of robotics. The exciting part of this race is the potential. Using learned policies for robot control is a very new field, and this 100-meter dash is showing better performance than other control methods. I think progress is going to accelerate from here.”

I certainly hope that this won’t be the last bipedal robot to learn to run, because I would pay money to attend a live bipedal robot race.

1Arguably, the fastest bipedal legged robot was probably the OutRunner—depending on what you decide counts as “legged” and “bipedal,” although it would not have qualified for this particular record due to its difficulty with starting and stopping.

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less