The December 2022 issue of IEEE Spectrum is here!

Close bar

Bioengineers Make DNA Into a Living Flash Drive

Cellular memory system could bring better control to biotechnology

3 min read
Bioengineers Make DNA Into a Living Flash Drive

RAD F1

Diagram: Drew Endy
Rewritable DNA Memory: When patches of DNA whose endpoints are the attachment sites attB and attP encounter the integrase protein [Int, in the red box], they’re flipped upside down, changing the DNA memory's state from the equivalent of a "0" to a "1". When they subsequently encounter integrase plus another type of protein called excisionase [Xis, white box], the DNA patches reset to "0". Click on the image to enlarge.

23 May 2012—Bioengineers looking to turn microbes into manufacturers have longed for a kit of components as regular and predictable as those used by electrical engineers. But biology is a lot messier. Now a group of engineers at Stanford University say they’ve managed to make one such component—the genetic equivalent of a reliable memory device. In a report published this week in Proceedings of the National Academy of Sciences, they detail how they developed rewritable DNA memory that works in living cells and can keep its data even as cells divide and multiply. DNA memory already exists but has been limited to write-once versions that can record only as many cellular events (such as cellular divisions) as there are bits. But the reversible storage system the Stanford researchers have ginned up is capable of being expanded to record a potentially huge number of events—2n events, where n is the number of bits.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
Vertical
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic
DarkGray

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}