The October 2022 issue of IEEE Spectrum is here!

Close bar

Big Data Beats Cancer

One woman’s fight against cancer in the new era of precision medicine

6 min read
Kathy and John Halamka
Photo: David Yellen

opening image for Treatments articleWife, Patient, Survivor: To find the best treatment for Kathy Halamka’s stage III breast cancer, her husband, John, deployed the big-data query tools he’d developed with a network of Harvard-affiliated hospitals.Photo: David Yellen

John and Kathy Halamka met on their first day in their freshman dorm at Stanford. They decided almost instantly that they made the perfect team: With his science background and her artistic sensibility, they’d be able to handle anything that college, or life, could throw at them.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

"Nothing About Us Without Us"

Assistive technologies are often designed without involving the people these technologies are supposed to help. That needs to change.

3 min read
A photo of two people holding signs outside.  One is in a wheelchair.
Erik McGregor/LightRocket/Getty Images

Before we redesigned our website a couple of years ago, we took pains to have some users show us how they navigate our content or complete specific tasks like leaving a comment or listening to a podcast. We queried them about what they liked or didn’t like about how our content is presented. And we took onboard their experiences and designed a site and a magazine based on that feedback.

So when I read this month’s cover story by Britt Young about using a variety of high- and low-tech prosthetic hands, I was surprised to learn that much bionic-hand development is conducted without taking the lived experience of people who use artificial hands into account.

Keep Reading ↓Show less

Remembering LED Pioneer Nick Holonyak

He received the 2003 IEEE Medal of Honor

3 min read
close-up portrait of man wearing glasses and suspenders holding something between his fingers

Professor Nick Holonyak, Jr., inventor of the light-emitting diode, holds a part of a stoplight that utilizes brighter, current version LED's designed by students of his.

Ralf-Finn Hestoft/Getty Images

close-up portrait of man wearing glasses and suspenders holding something between his fingersNick Holonyak, Jr. holds a part of a stoplight that utilizes a newer LED designed by his students. Ralf-Finn Hestoft/Getty Images

Nick Holonyak Jr., a prolific inventor and longtime professor of electrical engineering and computing, died on 17 September at the age of 93. In 1962, while working as a consulting scientist at General Electric’s Advanced Semiconductor Laboratory, he invented the first practical visible-spectrum LED. It is now used in light bulbs and lasers.

Holonyak left GE in 1963 to become a professor of electrical and computer engineering and researcher at his alma mater, the University of Illinois Urbana-Champaign. He retired from the university in 2013.

Keep Reading ↓Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓Show less