Beyond C.S.I.: The Rise of Computational Forensics

Pattern recognition and other computational methods can reduce the bias inherent in traditional criminal forensics

9 min read
Closed-circuit television captured this image just seconds after three bombs exploded at Madrid’s Atocha train station on 11 march 2004

Terror Error: Closed-circuit television captured this image just seconds after three bombs exploded at Madrid’s Atocha train station on 11 march 2004. The FBI claimed that a fingerprint at one of the bomb sites was that of U.S. citizen Brandon Mayfield but later retracted its accusation.

Efe/El PaIs/AP Photo

On 6 May 2004, a Portland, Oregon, lawyer named Brandon Mayfield was arrested for his alleged involvement in the terrorist bombings of four commuter trains in Madrid. The attacks killed 191 people and injured 2000 others. But Mayfield had never been to Spain, and his passport at the time was expired. The sole evidence against him was a partial fingerprint found on a plastic bag in a van used by the bombers. The FBI’s Integrated Automated Fingerprint Identification System had identified Mayfield as a possible match, and three FBI fingerprint experts as well as an outside analyst confirmed the identification.

The analysts knew that Mayfield had converted to Islam, was married to an Egyptian woman, and had once represented a man in a child custody case who later turned out to be part of a jihadist group. That information swayed the FBI inquiry in Mayfield’s direction.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Superlattices Could Make Bulky Capacitors Obsolete

Researchers hope artificial antiferroelectric capacitors could help miniaturize electronics further

3 min read
A grid of arrows pointing in different directions

In artificial antiferroelectric structures, electric dipoles are normally arranged in ways that lead to zero electric polarization.

Luxembourg Institute of Science and Technology/Science Advances

One roadblock to shrinking present-day electronics is the relatively large size of their capacitors. Now scientists have developed new “superlattices” that might help build capacitors as small as one-hundredth the size of conventional ones.

Whereas batteries store energy in chemical form, capacitors store energy in an electric field. Batteries typically possess greater energy densities than capacitors—they can store more energy for their weight. However, capacitors usually have greater power densities than batteries—they charge and discharge more quickly. This makes capacitors useful for applications involving pulses of power.

Keep Reading ↓Show less

No More Invasive Surgery—This Pacemaker Dissolves Instead

Temporary pacemakers are often vital but dangerous to remove when their jobs are done

3 min read
Animated gif of a device with a coil on one end dissolving between days 1 and 60.

The transient pacemaker, developed at Northwestern University, in Evanston, Ill., harmlessly dissolves in the patient's body over time.

Northwestern University

After having cardiovascular surgery, many patients require a temporary pacemaker to help stabilize their heart rate. The device consists of a pulse generator, one or more insulated wires, and an electrode at the end of each wire.

The pulse generator—a metal case that contains electronic circuitry with a small computer and a battery—regulates the impulses sent to the heart. The wire is connected to the pulse generator on one end while the electrode is placed inside one of the heart’s chambers.

But there are several issues with temporary pacemakers: The generator limits the patient’s mobility, and the wires must be surgically removed, which can cause complications such as infection, dislodgment, torn or damaged tissues, bleeding, and blood clots.

Keep Reading ↓Show less

Harnessing the Power of Innovation Intelligence

Through case studies and data visualizations, this webinar will show you how to leverage IP and scientific data analytics to identify emerging business opportunities

1 min read
Clarivate
Clarivate

Business and R&D leaders have to make consequential strategic decisions every day in a global marketplace that continues to get more interconnected and complex. Luckily, the job can be more manageable and efficient by leveraging IP and scientific data analytics. Register for this free webinar now!

Join us for the webinar, Harnessing the power of innovation intelligence, to hear Clarivate experts discuss how analyzing IP data, together with scientific content and industry-specific data, can provide organization-wide situational awareness and reveal valuable business insights.

Keep Reading ↓Show less