Better Mobile Phone Batteries, Please

The push to find applications for plastic electronics seems to have missed the need for better battery life in mobile phones

1 min read

I have expressed my dismay in the past with the odd fascination that Nokia and Cambridge University have with flexible mobile phones, and in particular their much publicized Morph phone concept.

This past week a number of news outlets have picked up on the annual update we get on the progress of this research. I particularly like this one because of the number of video interviews provided.

There is one video in particular that caught my eye and that is the one on a flexible supercapacitor. See below.

[youtube https://www.youtube.com/v/yfb0K-KKPjU?fs=1&hl=en_US expand=1]

What took me a bit by surprise was the speaker, Piers Andrew, highlighting the idea that this supercapacitor would be excellent for enabling much more powerful flashes in flash photography. I certainly understand that supercapacitors are ideal for short bursts of energy like a camera flash, and that the field of making flexible supercapacitors is a fairly new one, so the pride of the Cambridge researchers is no doubt deserved.

But again I ask, is there anyone at the research team who uses a mobile phone? The issue that makes me want to throw mine against the wall is that the battery seems to have the life span of a nanosecond. I don’t want my phone to wrap around my wrist or take better flash photography at night from greater distances, I want mine to have enough power to go a month without having to recharge. Will anyone listen?

The Conversation (0)

Two Startups Are Bringing Fiber to the Processor

Avicena’s blue microLEDs are the dark horse in a race with Ayar Labs’ laser-based system

5 min read
Diffuse blue light shines from a patterned surface through a ring. A blue cable leads away from it.

Avicena’s microLED chiplets could one day link all the CPUs in a computer cluster together.

Avicena

If a CPU in Seoul sends a byte of data to a processor in Prague, the information covers most of the distance as light, zipping along with no resistance. But put both those processors on the same motherboard, and they’ll need to communicate over energy-sapping copper, which slow the communication speeds possible within computers. Two Silicon Valley startups, Avicena and Ayar Labs, are doing something about that longstanding limit. If they succeed in their attempts to finally bring optical fiber all the way to the processor, it might not just accelerate computing—it might also remake it.

Both companies are developing fiber-connected chiplets, small chips meant to share a high-bandwidth connection with CPUs and other data-hungry silicon in a shared package. They are each ramping up production in 2023, though it may be a couple of years before we see a computer on the market with either product.

Keep Reading ↓Show less