The December 2022 issue of IEEE Spectrum is here!

Close bar

Berkeley Bionics Introduces eLEGS Robotic Exoskeleton

After only a few hours of practice, some paraplegics are able to use this robot suit to stand up and walk

2 min read
Berkeley Bionics Introduces eLEGS Robotic Exoskeleton

The woman in this picture is Amanda Boxtel, who has had a T11/12 spinal injury for 18 years. She’s a paraplegic, but she’s now able to walk with the aid of eLEGS, a robotic exoskeleton system from Berkeley Bionics. You probably remember Berkeley Bionics from their cargo-carrying exoskeleton, HULC, which they’ve since licensed to Lockheed Martin for production for the military. eLEGS is largely based on HULC, except designed for (eventual) home use. The system is relatively light at 45 pounds, and you strap into it by yourself while sitting down. After only a few hours of practice, paraplegics are able to use eLEGS to stand up and walk:

eLEGS is very efficient, and allows for an entire day of walking without needing to be recharged. It’s also extremely quiet, which is very important for a device that is designed to allow you to move around and interact with people in public and social situations.

berkeley bionics elegs

I made a point of asking how exactly the interface between the user and the system works, and was told that it was proprietary, “but nice try.” In general, however, it appears as though eLEGS senses arm movements through ’smart crutches’ (it also looks like there’s some kind of sensor attached to each upper arm), and as the user moves one crutch forward, eLEGS moves the opposite leg. However, to some extent eLEGS learns and adapts to each user, so there must be some other stuff going on under the hood.

eLEGS will be available next July to a select group of rehab centers, but from the beginning, eLEGS was designed for people to take home and use by themselves. By 2013, eLEGS should be available for purchase for something in the low six figures, although the eventual target price is something in the neighborhood of $50k, which is equivalent to a top of the line wheelchair.

I especially liked what Amanda says at the end of the video:

“This is not a wave of the future. The eLEGS is right now. I don’t have to be hopeful… This is reality.”

It’s pretty awesome to realize how true that is.

[ Berkeley Bionics ]

The Conversation (0)

How Robots Can Help Us Act and Feel Younger

Toyota’s Gill Pratt on enhancing independence in old age

10 min read
An illustration of a woman making a salad with robotic arms around her holding vegetables and other salad ingredients.
Dan Page

By 2050, the global population aged 65 or more will be nearly double what it is today. The number of people over the age of 80 will triple, approaching half a billion. Supporting an aging population is a worldwide concern, but this demographic shift is especially pronounced in Japan, where more than a third of Japanese will be 65 or older by midcentury.

Toyota Research Institute (TRI), which was established by Toyota Motor Corp. in 2015 to explore autonomous cars, robotics, and “human amplification technologies,” has also been focusing a significant portion of its research on ways to help older people maintain their health, happiness, and independence as long as possible. While an important goal in itself, improving self-sufficiency for the elderly also reduces the amount of support they need from society more broadly. And without technological help, sustaining this population in an effective and dignified manner will grow increasingly difficult—first in Japan, but globally soon after.

Keep Reading ↓Show less