Batcopter Does High-Tech Robotic Bat Harassment for Science

Bats are somehow able to avoid running into each other when traveling in giant clouds, and scientists are sending in the UAVs to find out how

2 min read
Batcopter Does High-Tech Robotic Bat Harassment for Science

When bats leave their caves at night to go eat bugs, they can swarm in the millions while somehow managing to not crash into each other, which is a pretty clever trick. Kenn Sebesta, a researcher at Boston University, is wondering just how exactly they pull this off, and there's nothing better than good old fashioned experimentin' with robots to see how the bats do what they do.

This is Batcopter 2.0 (aka "Quady"), a home-built quadrotor made from carbon-fiber arrow shafts, twine, glue, zip ties, bamboo, foam, and netting to make sure that any bats not doing their jobs wouldn't get decapitated by a stray prop. A GoPro camera was stuck on the front and the whole thing was piloted from the ground with an array of three high-speed infrared cameras watching the glowing hot robot-on-bat nighttime aerial action:

To control the Batcopter, Sebesta says he and his colleagues used OpenPilot, an open source autopilot platform for small UAVs, which "allowed us to get so far so fast and was the real hero."

The UAV did end up having an unfortunate accident shortly thereafter, but not before collecting terabytes of high quality video of the bats interacting with movements of the UAV. The Batcopter team is planning to analyze this footage to try and see if there are any fundamental laws of flying that the bats follow to keep from colliding with other bats and wayward robots. If there are, it could lead to better autonomous flight controllers for UAVs, as well as ultrasonic squeaks of relief from bats everywhere as scientists find something else to do with their time.

UPDATE: No animals were harmed in the making of this robot! Professor John Baillieul, who directs Boston University's Laboratory for Intelligent Mechatronic Systems, writes us to say the researchers involved in the project, which includes several biologists, are very careful to design and use technology that is animal-friendly and meets all of the acceptable standards of animal care and use in the laboratory and field. "We do hope to use robotic air vehicles to observe bats and other flying animals in ways that have not been done up to now," Baillieul says, "but I can't emphasize too strongly that we have not harmed and are not seeking to harm or harass animals in any way, including making them fearful."

[ Boston University ] and [ OpenPilot.org ] via [ Slashdot ]

Thanks, Kenn!

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less