Baseball's Engineer: Ben Hansen Says Biometrics Can Save Pitchers' Elbows

At the sports tech company Motus Global, Hansen works on sensors and software to prevent injuries

2 min read
Photo of a pitcher throwing a baseball.
Ben Hansen pitched for the Milwaukee School of Engineering's baseball team before going into sports technology.
Photo: Motus

When Benjamin Hansen was playing baseball in high school, around 2006, technologies to monitor athletes’ bodies and performance weren’t yet commonplace. Yet Hansen wanted to collect data any way he could. “I would sit on the bench with a calculator and a stopwatch, timing the pitchers,” he says. He clicked the stopwatch when the pitcher released the baseball and again when the ball popped into the catcher’s mitt, then factored in the pitcher’s height in calculating the pitch velocity.

Hansen’s coach, however, was not impressed. “My coach should have embraced it,” he says, wistfully. “But instead he made me run laps.”

Hansen kept playing baseball through college, pitching for his team at the Milwaukee School of Engineering. But he was plagued by injuries. He well remembers a practice game in which he logged 15 straight outs—then felt a sharp pain in his elbow. He had partially torn his ulnar collateral ligament (UCL) and had to sit out the rest of the season. “I always asked the question: Why is this happening?” he says.

Today, Hansen is the vice president of biomechanics and innovation for Motus Global, in St. Petersburg, Fla., a startup that produces wearable sports technology. For IEEE Spectrum’s October issue, he describes Motus’s product for baseball pitchers, a compression sleeve with sensors to measure workload and muscle fatigue. From Little League to Major League Baseball, pitchers are using Motus gear to understand their bodies, improve performance, and prevent injuries.

Traditional wisdom holds that pitcher injuries result from faulty form. But data from Motus’s wearable indicates that it’s the accumulated workload on a player’s muscles and ligaments that causes injuries like UCL tears, which have become far too common in baseball. By displaying measurements of fatigue and suggesting training regimens, rehab workouts, and in-game strategies, the wearable can help prevent players from pushing themselves past their limits. It’s a goal that even Hansen’s old coach would probably endorse.

This article appears in the October 2019 print issue as “Throwing Data Around.”

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Restoring Hearing With Beams of Light

Gene therapy and optoelectronics could radically upgrade hearing for millions of people

13 min read
A computer graphic shows a gray structure that’s curled like a snail’s shell. A big purple line runs through it. Many clusters of smaller red lines are scattered throughout the curled structure.

Human hearing depends on the cochlea, a snail-shaped structure in the inner ear. A new kind of cochlear implant for people with disabling hearing loss would use beams of light to stimulate the cochlear nerve.

Lakshay Khurana and Daniel Keppeler
Blue

There’s a popular misconception that cochlear implants restore natural hearing. In fact, these marvels of engineering give people a new kind of “electric hearing” that they must learn how to use.

Natural hearing results from vibrations hitting tiny structures called hair cells within the cochlea in the inner ear. A cochlear implant bypasses the damaged or dysfunctional parts of the ear and uses electrodes to directly stimulate the cochlear nerve, which sends signals to the brain. When my hearing-impaired patients have their cochlear implants turned on for the first time, they often report that voices sound flat and robotic and that background noises blur together and drown out voices. Although users can have many sessions with technicians to “tune” and adjust their implants’ settings to make sounds more pleasant and helpful, there’s a limit to what can be achieved with today’s technology.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}