The December 2022 issue of IEEE Spectrum is here!

Close bar

Baseball's Engineer: Ben Hansen Says Biometrics Can Save Pitchers' Elbows

At the sports tech company Motus Global, Hansen works on sensors and software to prevent injuries

2 min read
Photo of a pitcher throwing a baseball.
Ben Hansen pitched for the Milwaukee School of Engineering's baseball team before going into sports technology.
Photo: Motus

When Benjamin Hansen was playing baseball in high school, around 2006, technologies to monitor athletes’ bodies and performance weren’t yet commonplace. Yet Hansen wanted to collect data any way he could. “I would sit on the bench with a calculator and a stopwatch, timing the pitchers,” he says. He clicked the stopwatch when the pitcher released the baseball and again when the ball popped into the catcher’s mitt, then factored in the pitcher’s height in calculating the pitch velocity.

Hansen’s coach, however, was not impressed. “My coach should have embraced it,” he says, wistfully. “But instead he made me run laps.”

Hansen kept playing baseball through college, pitching for his team at the Milwaukee School of Engineering. But he was plagued by injuries. He well remembers a practice game in which he logged 15 straight outs—then felt a sharp pain in his elbow. He had partially torn his ulnar collateral ligament (UCL) and had to sit out the rest of the season. “I always asked the question: Why is this happening?” he says.

Today, Hansen is the vice president of biomechanics and innovation for Motus Global, in St. Petersburg, Fla., a startup that produces wearable sports technology. For IEEE Spectrum’s October issue, he describes Motus’s product for baseball pitchers, a compression sleeve with sensors to measure workload and muscle fatigue. From Little League to Major League Baseball, pitchers are using Motus gear to understand their bodies, improve performance, and prevent injuries.

Traditional wisdom holds that pitcher injuries result from faulty form. But data from Motus’s wearable indicates that it’s the accumulated workload on a player’s muscles and ligaments that causes injuries like UCL tears, which have become far too common in baseball. By displaying measurements of fatigue and suggesting training regimens, rehab workouts, and in-game strategies, the wearable can help prevent players from pushing themselves past their limits. It’s a goal that even Hansen’s old coach would probably endorse.

This article appears in the October 2019 print issue as “Throwing Data Around.”

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Are You Ready for Workplace Brain Scanning?

Extracting and using brain data will make workers happier and more productive, backers say

11 min read
Vertical
A photo collage showing a man wearing a eeg headset while looking at a computer screen.
Nadia Radic
DarkGray

Get ready: Neurotechnology is coming to the workplace. Neural sensors are now reliable and affordable enough to support commercial pilot projects that extract productivity-enhancing data from workers’ brains. These projects aren’t confined to specialized workplaces; they’re also happening in offices, factories, farms, and airports. The companies and people behind these neurotech devices are certain that they will improve our lives. But there are serious questions about whether work should be organized around certain functions of the brain, rather than the person as a whole.

To be clear, the kind of neurotech that’s currently available is nowhere close to reading minds. Sensors detect electrical activity across different areas of the brain, and the patterns in that activity can be broadly correlated with different feelings or physiological responses, such as stress, focus, or a reaction to external stimuli. These data can be exploited to make workers more efficient—and, proponents of the technology say, to make them happier. Two of the most interesting innovators in this field are the Israel-based startup InnerEye, which aims to give workers superhuman abilities, and Emotiv, a Silicon Valley neurotech company that’s bringing a brain-tracking wearable to office workers, including those working remotely.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}