Banner Year for Solar: 2010 Saw Major Growth in US Installations

US reaches 2.6 gigawatts installed solar capacity

2 min read
Banner Year for Solar: 2010 Saw Major Growth in US Installations

The Solar Energy Industries Association released its report on 2010 solar markets and installations yesterday, and revealed a rapidly growing sector of the energy market. The United States installed 956 megawatts of all types of solar power in 2010, giving a cumulative installed capacity of 2.6 gigawatts (enough to power about 500,000 homes). Impressive, no doubt, but this still represents less than one percent of the installed electricity capacity in the country

Still, it is the growth in the industry that is most impressive. In 2009, the total value of solar installations was $3.6 billion. In 2010, that number jumped all the way to $6 billion. As reported by Reuters, though, the global share of US photovoltaic installations actually slipped in 2010, to 5 percent of the world's total from 6.5 percent in 2009. Even though the pace is quickening in the US, other countries are pushing solar hard enough to leave the bigger market behind.

And if that's not enough to show how important specific solar-minded policies are, just a glance at the states that are moving fastest on solar power should reinforce the notion. California led the way on solar installations in 2010 and continues to lead in cumulative capacity, but right behind it is little, not-particularly-sunny New Jersey. Those two states, along with Florida, Arizona, Nevada, Colorado and Pennsylvania (also not the most obvious of solar landing spots), accounted for 76 percent of the solar capacity installed in 2010. New Jersey continues to offer some of the best solar subsidies and tax breaks in the country.

It is of course difficult to predict if the same degree of growth can continue in 2011 and beyond, but there have been good signs, including approvals for some of the largest solar installations in the world. If some of those get built on reasonable time scales, the industry goal of powering 2 million homes by 2015 could be easily within reach.

(Graph via SEIA)

The Conversation (0)

Smokey the AI

Smart image analysis algorithms, fed by cameras carried by drones and ground vehicles, can help power companies prevent forest fires

7 min read
Smokey the AI

The 2021 Dixie Fire in northern California is suspected of being caused by Pacific Gas & Electric's equipment. The fire is the second-largest in California history.

Robyn Beck/AFP/Getty Images

The 2020 fire season in the United States was the worst in at least 70 years, with some 4 million hectares burned on the west coast alone. These West Coast fires killed at least 37 people, destroyed hundreds of structures, caused nearly US $20 billion in damage, and filled the air with smoke that threatened the health of millions of people. And this was on top of a 2018 fire season that burned more than 700,000 hectares of land in California, and a 2019-to-2020 wildfire season in Australia that torched nearly 18 million hectares.

While some of these fires started from human carelessness—or arson—far too many were sparked and spread by the electrical power infrastructure and power lines. The California Department of Forestry and Fire Protection (Cal Fire) calculates that nearly 100,000 burned hectares of those 2018 California fires were the fault of the electric power infrastructure, including the devastating Camp Fire, which wiped out most of the town of Paradise. And in July of this year, Pacific Gas & Electric indicated that blown fuses on one of its utility poles may have sparked the Dixie Fire, which burned nearly 400,000 hectares.

Until these recent disasters, most people, even those living in vulnerable areas, didn't give much thought to the fire risk from the electrical infrastructure. Power companies trim trees and inspect lines on a regular—if not particularly frequent—basis.

However, the frequency of these inspections has changed little over the years, even though climate change is causing drier and hotter weather conditions that lead up to more intense wildfires. In addition, many key electrical components are beyond their shelf lives, including insulators, transformers, arrestors, and splices that are more than 40 years old. Many transmission towers, most built for a 40-year lifespan, are entering their final decade.

Keep Reading ↓ Show less