The December 2022 issue of IEEE Spectrum is here!

Close bar

Autonomous Modules Self-Assemble in Air and Water

Using nothing but wind and flowing water, simple modules can build complex structures completely autonomously

2 min read
Autonomous Modules Self-Assemble in Air and Water
Photo: MIT Self-Assembly Lab

We’ve seen a few different robotic construction projects that leverage stochasticity to assemble themselves into complex, ordered shapes or structures through a combination of time and random motion. Generally, the autonomous protorobot modules (is that a thing?) are active on some kind of artificial random motion generator like a table that shakes, but it’s much more fun to see autonomous modules assembling themselves using only the power of nature.

This project of helium balloons carrying small structural segments is called Aerial Assemblies, and it comes from MIT researcher Skylar Tibbits and MIT’s Self-Assembly Lab:

Aerial Assemblies focuses on large-scale modules that can assemble in the airspace high above land, construction sites or complex environments. After the helium fades and the modules touch-down, the assembled lightweight structural lattices will remain.

Which shapes the modules create depends on which of their connection points are activated, using magnets or whatever mechanisms are appropriate for the final structure. The assembly process itself is completely autonomous, depending only on enough energy being input into the system to keep the modules moving randomly relative to each other.

In this particular case, that just means a windy day, although the same assembly principle can be applied to modules in turbulent water, and the Self-Assembly lab has managed to create a chair in this way:

The overall idea here is that eventually it may be possible to use techniques like these to create very large, complex structures in places that wouldn’t otherwise have the space or infrastructure necessary to do so, like in space, in the developing world, in any disaster area, or on a scale too tiny for anything but self-assembly. As Tibbits explained to Vice:

One long-term goal of these experiments is to develop a construction process that needs neither machine nor human intervention, burns no fossil fuels, requires no extra energy, can run 24/7, and is optimal for situations that pose a lot of problems for existing technologies. 

[ MIT ] via [ Vice ]

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less