Autonomous Emergency Braking

Humans are still a factor in the adaptation of automatic braking

3 min read
Autonomous Emergency Braking
Illustration: McKible

DriverlessCarsMasterBrakingIllustration: mckibillo

The remarkable thing about letting a car do the braking for you is not that the car stops. It’s how late the car hits the brakes. It’s almost as if a teenager were testing his or her reflexes. Those of us raised on automatic transmissions and cruise control may expect cars to take flighty human drivers out of the loop rather quickly. But if my ride in a test vehicle at the 2013 Frankfurt Motor Show is any indicator, carmakers are taking their time taking over. Even the most imperturbable driving instructor might get jumpy using today’s autonomous emergency braking (AEB), also called advanced emergency braking systems.

AEB isn’t even a teenager: Mercedes-Benz introduced an early version with its 2005 S-Class. That system used radar to detect obstacles, warned drivers, and primed brakes so that they would be more effective when the driver finally used them. Yet in an indoor test in simulated foggy conditions, the car’s radar failed to activate the system. A journalist crashed one into another Mercedes-Benz during a televised demonstration. Company engineers later decided that the garage’s steel interior had confused the radar. But the technology is maturing, and the European New Car Assessment Programme (Euro NCAP), a public-private car-testing body and the counterpart to the U.S. NCAP, will require AEB to obtain its highest safety rating next year

Now the state of the art is to use more than one type of sensor to cross-check for obstacles, carmakers say. Some complement radar systems with optical cameras. Today’s S-Class has short-range and long-range radar, optical cameras, and ultrasonic detectors for the closest obstacles. Optical cameras can be fooled by sunlight, wet roads, and night, of course, and ultrasonic sensors work only at the shortest ranges and lowest speeds. Certain research vehicles also include lidar, a radarlike system that uses light rather than radio waves. As the instruments grow smaller and cheaper, carmakers may include lidar in production cars as well.

Yet carmakers still hesitate to override a driver’s instincts. The German auto club ADAC reported in a test [pdf] that it deducted points from a BMW 5 Series for initiating only partial braking after warning the driver. But such a limited action may please self-confident drivers. Harald Barth, a product marketing manager at car supplier Valeo, says that one reason carmakers have kept the brakes on autonomous driving is that they want to win the trust of drivers. “We need not just to offer good systems but also to educate the end user. We are going step by step,” he says.

That will also give engineers more time to figure out how humans react to having control taken away from them. Last year, a pair of studies applied analyses called system-of-systems and operator sequence diagrams to AEB scenarios. They both found that when autonomous systems attempt to take over from human drivers, humans do not always respond well. Or sometimes drivers respond too well and do not react in time to take over again when the autonomous systems attempt to return control to them. The latter study sounded a grim note: “There are no formal methods for testing the performance of AEBs from either a technical or human factors point of view. The effectiveness of AEBs will, however, become increasingly clear in the coming years through fatality and injury statistics,” its authors wrote.

Going slow will also give Euro NCAP and other testing bodies more time to improve their testing capacity. Now Euro NCAP uses a small trailer as the crash target, allowing only simulated rear-end collisions, but it says it will develop targets simulating pedestrians, among other improvements [pdf]. For pedestrians, if not anxious driving instructors, that should be a relief.

The Conversation (0)

New Contactless ECG Continuously Monitors the Heart

Millimeter-wave radar device makes electrode-less cardiovascular health tech possible

3 min read
Video still of a man lying down. A box shaped device on a pole sits above his body. To the left, a monitor displays ECG readings.

The researchers demonstrated an experimental setup for contactless ECG monitoring using millimeter-wave radar.

University of Science and Technology Of China/IEEE

This article is part of our exclusive IEEE Journal Watch series in partnership with IEEE Xplore.

More than 100 years after the technology was first developed, the electrocardiogram (ECG) remains the gold standard for measuring the electrical activity of the heart. However, an ECG currently requires the attachment of electrodes to a person’s skin. Even the latest consumer technologies like the Apple Watch require the user to touch the device’s protruding “digital crown” with a finger, which forms a circuit across the user’s body, thereby enabling the measurement of electrical signals across the heart.

However, researchers in China have reported the invention of a novel ECG technology that uses millimeter-wave radar and AI to infer an ECG signal, making the system completely contactless. Should the researchers’ initial promising results bear out, the millimeter-wave tech could inspire new applications based on a reliable and uninterrupted stream of heart health data.

Keep Reading ↓Show less

Video Friday: Turkey Sandwich

Your weekly selection of awesome robot videos

4 min read
A teleoperated humanoid robot torso stands in a kitchen assembling a turkey sandwich from ingredients on a tray

Video Friday is your weekly selection of awesome robotics videos, collected by your friends at IEEE Spectrum robotics. We also post a weekly calendar of upcoming robotics events for the next few months. Please send us your events for inclusion.

CoRL 2022: 14–18 December 2022, AUCKLAND, NEW ZEALAND

Enjoy today's videos!

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less