Autonomous Emergency Braking

Humans are still a factor in the adaptation of automatic braking

3 min read
Illustration: McKible

DriverlessCarsMasterBraking Illustration: mckibillo

The remarkable thing about letting a car do the braking for you is not that the car stops. It’s how late the car hits the brakes. It’s almost as if a teenager were testing his or her reflexes. Those of us raised on automatic transmissions and cruise control may expect cars to take flighty human drivers out of the loop rather quickly. But if my ride in a test vehicle at the 2013 Frankfurt Motor Show is any indicator, carmakers are taking their time taking over. Even the most imperturbable driving instructor might get jumpy using today’s autonomous emergency braking (AEB), also called advanced emergency braking systems.

AEB isn’t even a teenager: Mercedes-Benz introduced an early version with its 2005 S-Class. That system used radar to detect obstacles, warned drivers, and primed brakes so that they would be more effective when the driver finally used them. Yet in an indoor test in simulated foggy conditions, the car’s radar failed to activate the system. A journalist crashed one into another Mercedes-Benz during a televised demonstration. Company engineers later decided that the garage’s steel interior had confused the radar. But the technology is maturing, and the European New Car Assessment Programme (Euro NCAP), a public-private car-testing body and the counterpart to the U.S. NCAP, will require AEB to obtain its highest safety rating next year

Now the state of the art is to use more than one type of sensor to cross-check for obstacles, carmakers say. Some complement radar systems with optical cameras. Today’s S-Class has short-range and long-range radar, optical cameras, and ultrasonic detectors for the closest obstacles. Optical cameras can be fooled by sunlight, wet roads, and night, of course, and ultrasonic sensors work only at the shortest ranges and lowest speeds. Certain research vehicles also include lidar, a radarlike system that uses light rather than radio waves. As the instruments grow smaller and cheaper, carmakers may include lidar in production cars as well.

Yet carmakers still hesitate to override a driver’s instincts. The German auto club ADAC reported in a test [pdf] that it deducted points from a BMW 5 Series for initiating only partial braking after warning the driver. But such a limited action may please self-confident drivers. Harald Barth, a product marketing manager at car supplier Valeo, says that one reason carmakers have kept the brakes on autonomous driving is that they want to win the trust of drivers. “We need not just to offer good systems but also to educate the end user. We are going step by step,” he says.

That will also give engineers more time to figure out how humans react to having control taken away from them. Last year, a pair of studies applied analyses called system-of-systems and operator sequence diagrams to AEB scenarios. They both found that when autonomous systems attempt to take over from human drivers, humans do not always respond well. Or sometimes drivers respond too well and do not react in time to take over again when the autonomous systems attempt to return control to them. The latter study sounded a grim note: “There are no formal methods for testing the performance of AEBs from either a technical or human factors point of view. The effectiveness of AEBs will, however, become increasingly clear in the coming years through fatality and injury statistics,” its authors wrote.

Going slow will also give Euro NCAP and other testing bodies more time to improve their testing capacity. Now Euro NCAP uses a small trailer as the crash target, allowing only simulated rear-end collisions, but it says it will develop targets simulating pedestrians, among other improvements [pdf]. For pedestrians, if not anxious driving instructors, that should be a relief.

The Conversation (0)

IoT-ize Your Old Gadgets With a Mechanical Hijacking Device

This tiny connected manipulator can, its creators say, make any device smart

3 min read

An IoTIZER installed on dimmer switch

KAIST/Korea Polytechnic University
IoT

Just about every device you own is probably available with Internet connectivity. Whether or not every device you own actually needs Internet connectivity is up for debate. But if you want it, it's there—as long as you're able to afford it, of course. Connectivity usually comes at a premium, and it also usually involves buying a brand new whatever it is, because new hardware and software and services are required.

If connectivity is important to you, there aren't many options for older devices. It's not hard to turn them on and off with a connected socket adapter of some sort, but as you start to go back more than a few years, things become increasingly designed for direct human interaction rather than for the Internet, with buttons and switches and dials and whatnot.

IoTIZER is a prototype of a mechanical hijacking device (MHD), designed to replace human manipulation of existing products. As the name suggests, it can IoT-ize just about anything designed to be operated by a human, potentially giving a new connected life to your stuff.

Keep Reading ↓ Show less

Video Friday: Android Printing

Your weekly selection of awesome robot videos

4 min read

Your weekly selection of awesome robot videos

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We'll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far ( send us your events!):

RO-MAN 2021 – August 8-12, 2021 – [Online Event]

DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA

WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA

IROS 2021 – September 27-1, 2021 – [Online Event]

ROSCon 2021 – October 21-23, 2021 – New Orleans, LA, USA

Let us know if you have suggestions for next week, and enjoy today's videos.

Keep Reading ↓ Show less
Rohde & Schwarz

Learn more about domain controllers and the new generation of high-performance CPUs in modern cars.

Trending Stories

The most-read stories on IEEE Spectrum right now