Autonomous Air Taxis Will Take Off in 2017, but Won’t Go Far

Larry Page and other entrepreneurs want to let robotic pilots whisk you away

3 min read
Photo-illustration: Edmon de Haro
Photo-illustration: Edmon de Haro

In the future, the joke goes, airliners will each have a pilot and a dog. The dog will be there to bite the pilot if he touches the controls, and the pilot will be there to feed the dog. It’s no joke, though, when NASA scientists begin entertaining [PDF] the idea of replacing the copilot with a wideband connection to a ground controller. Who will take over the plane should the pilot become incapacitated? Nor is it a joke to carry the argument to its logical conclusion and do away with the pilot altogether.

It’s a beguiling vision. An autonomous airplane reliable enough to be trusted by passengers and air-safety regulators could save not just on salaries but also on the cost of managing the glitch-prone minuet by which well-rested flight crews are united with the planes they’re supposed to fly. That logistical problem will get harder as the pilot shortage worsens, and it will be hardest of all for short-hop air service, where the pilot-to-passenger ratio is high.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Superlattices Could Make Bulky Capacitors Obsolete

Researchers hope artificial antiferroelectric capacitors could help miniaturize electronics further

3 min read
A grid of arrows pointing in different directions

In artificial antiferroelectric structures, electric dipoles are normally arranged in ways that lead to zero electric polarization.

Luxembourg Institute of Science and Technology/Science Advances

One roadblock to shrinking present-day electronics is the relatively large size of their capacitors. Now scientists have developed new “superlattices” that might help build capacitors as small as one-hundredth the size of conventional ones.

Whereas batteries store energy in chemical form, capacitors store energy in an electric field. Batteries typically possess greater energy densities than capacitors—they can store more energy for their weight. However, capacitors usually have greater power densities than batteries—they charge and discharge more quickly. This makes capacitors useful for applications involving pulses of power.

Keep Reading ↓Show less

No More Invasive Surgery—This Pacemaker Dissolves Instead

Temporary pacemakers are often vital but dangerous to remove when their jobs are done

3 min read
Animated gif of a device with a coil on one end dissolving between days 1 and 60.

The transient pacemaker, developed at Northwestern University, in Evanston, Ill., harmlessly dissolves in the patient's body over time.

Northwestern University

After having cardiovascular surgery, many patients require a temporary pacemaker to help stabilize their heart rate. The device consists of a pulse generator, one or more insulated wires, and an electrode at the end of each wire.

The pulse generator—a metal case that contains electronic circuitry with a small computer and a battery—regulates the impulses sent to the heart. The wire is connected to the pulse generator on one end while the electrode is placed inside one of the heart’s chambers.

But there are several issues with temporary pacemakers: The generator limits the patient’s mobility, and the wires must be surgically removed, which can cause complications such as infection, dislodgment, torn or damaged tissues, bleeding, and blood clots.

Keep Reading ↓Show less

Take the Lead on Satellite Design Using Digital Engineering

Learn how to accelerate your satellite design process and reduce risk and costs with model-based engineering methods

1 min read
Keysight
Keysight

Win the race to design and deploy satellite technologies and systems. Learn how new digital engineering techniques can accelerate development and reduce your risk and costs. Download this free whitepaper now!

Our white paper covers:

Keep Reading ↓Show less