Audi Robotic Racecar Relies on GPS

Digital maps can keep you on track—if it's a race track

1 min read
Audi Robotic Racecar Relies on GPS
Photo: Audi

This weekend Audi will show off its self-driving technology under what would seem to be the most challenging conditions imaginable: a race track.

Yet despite the high speeds involved, the feat is simpler in some ways than navigating city streets, where you have to recognize and avoid pedestrians and squirrels.  A race car merely has to keep its position on the track, moving in and out of it only when passing or dodging another car.

And because the track is a known quantity, the car can keep it all in its little electronic head and rely heavily on GPS—provided it’s corrected to an accuracy of just a few centimeters. Which, in this case, it will be.

The public demonstration will take place on Sunday at the Hockenheim race track, in southwestern Germany. The car, an RS 7, will do a lap or two at race pace, around 250 kilometers per hour (149 miles per hour). It will duel with an identical, but human-piloted car. My money’s on the robot. 

“We’re going into the curves, the cornering, just like a professional race driver,” Peter Bergmiller, a technician for Audi, says in the company’s video promotion.  “So for example, we have lateral accelerations of more than 1 g.”

Watch the promo:

The Conversation (0)

We Need More Than Just Electric Vehicles

To decarbonize road transport we need to complement EVs with bikes, rail, city planning, and alternative energy

11 min read
A worker works on the frame of a car on an assembly line.

China has more EVs than any other country—but it also gets most of its electricity from coal.

VCG/Getty Images
Green

EVs have finally come of age. The total cost of purchasing and driving one—the cost of ownership—has fallen nearly to parity with a typical gasoline-fueled car. Scientists and engineers have extended the range of EVs by cramming ever more energy into their batteries, and vehicle-charging networks have expanded in many countries. In the United States, for example, there are more than 49,000 public charging stations, and it is now possible to drive an EV from New York to California using public charging networks.

With all this, consumers and policymakers alike are hopeful that society will soon greatly reduce its carbon emissions by replacing today’s cars with electric vehicles. Indeed, adopting electric vehicles will go a long way in helping to improve environmental outcomes. But EVs come with important weaknesses, and so people shouldn’t count on them alone to do the job, even for the transportation sector.

Keep Reading ↓Show less