The July 2022 issue of IEEE Spectrum is here!

Close bar

Atomic Movies Offer Insights Into More Efficient Perovskites

Photons spin atoms around into a whirl inside of perovskites, offering clues about how to make the material a more efficient light-to-electricity transformer

2 min read
Illustration of the ultrafast electron diffraction (UED) experiment used to capture the rapid atomic response to light in perovskites.
Illustration of the ultrafast electron diffraction (UED) experiment used to capture the rapid atomic response to light in perovskites. An electron beam (blue) is deflected as it passes through the perovskite sample, generating an intensity or diffraction pattern on a detector that allows the reconstruction of the sample’s atomic structure. By measuring how the pattern changes over time after the sample was hit by a laser pulse (red), researchers can create an ultrafast movie of the atomic response.
Illustration: SLAC National Accelerator Laboratory

Researchers at the U.S. Department of Energy’s SLAC National Accelerator Laboratory have leveraged a long-used microscopy tool to investigate why perovskites, the “wonder materials” in photovoltaics, have proven to be so efficient at converting light into electricity. These studies have revealed for the first time that light essentially spins the atoms inside of perovskites into a whirl, offering new clues into how scientists can make these materials even more efficient at converting light into electricity.

In research described in the journal Science Advances, the SLAC scientists employed the decades-old microscopy technique known as ultrafast electron diffraction (UED) to create a kind of movie of how atoms in perovskites respond within a trillionth of a second of being hit by short pulses of light.

The UED technique depends on the fact that electrons have wavelengths much smaller than the spacing between atoms in materials. By probing the interference patterns associated with how the electrons bounce off these atoms, one can effectively reconstruct and visualize the atomic-scale structure of materials.

“Because the electrons are confined within ultrashort pulses, they provide a snapshot of this process at a controllable time after a photon is absorbed,” said SLAC researcher Aaron Lindenberg in an e-mail interview with IEEE Spectrum. “By taking many of these snapshots, one can put these together and make a kind of a movie showing what the atoms are doing when a solar cell based on the hybrid perovskites is operating.”

While UED has been around for decades, the facilities at SLAC offer what is known as a relativistic device, meaning the electrons in the beam are traveling much closer to the speed of light than in traditional UED devices. This means that you can put more electrons into each femtosecond-long laser pulse, which in turn makes it possible to probe more complex, disordered, or weakly scattering structures, according to Lindenberg.

Hybrid perovskites have made a huge impact on materials scientists’ ability to investigate new materials for solar cells and other optoelectronic devices.  The architecture common to many of the perovskites investigated for solar cell applications is a hybrid of iodine, lead, and an organic molecule called methylammonium. The iodine atoms are arranged in octohedra, eight-sided structures that look like two pyramids joined at their bases. The lead atoms reside inside the octohedra and the methylammonium molecules lie between the octohedra. However, to understand unique functionality of this architecture and to develop related materials, researchers need to understand what the atoms are doing when is in operation. 

While previous studies have examined the role of the methylammonium ions and their motions in transporting electric charge through the material, the SLAC researchers discovered that light causes large deformations in the network of lead and iodine atoms. This, they suspect, could be crucial for the efficiency of perovskites.

“We think these ultrafast processes play a central role in determining the efficiencies of a solar cell based on these materials and this in turn requires a source like UED to enable this real-time measurement,” says Lindenberg.

While Lindenberg concedes that it is possibly too early to know how these results will impact the development of perovskites for photovoltaics, these most recent results show that very large deformations of certain atoms (the iodines) occurring on ultrafast time-scales may play a central role in the ultimate efficiency of devices based on these materials. 

Lindenberg added: “Coupling between these experimental efforts, theoretical efforts, and synthetic efforts, we think, will enable the engineering of new kinds of materials for photovoltaic applications and new fundamental understanding of how these materials operate.”

The Conversation (0)

3 Ways 3D Chip Tech Is Upending Computing

AMD, Graphcore, and Intel show why the industry’s leading edge is going vertical

8 min read
Vertical
A stack of 3 images.  One of a chip, another is a group of chips and a single grey chip.
Intel; Graphcore; AMD
DarkBlue1

A crop of high-performance processors is showing that the new direction for continuing Moore’s Law is all about up. Each generation of processor needs to perform better than the last, and, at its most basic, that means integrating more logic onto the silicon. But there are two problems: One is that our ability to shrink transistors and the logic and memory blocks they make up is slowing down. The other is that chips have reached their size limits. Photolithography tools can pattern only an area of about 850 square millimeters, which is about the size of a top-of-the-line Nvidia GPU.

For a few years now, developers of systems-on-chips have begun to break up their ever-larger designs into smaller chiplets and link them together inside the same package to effectively increase the silicon area, among other advantages. In CPUs, these links have mostly been so-called 2.5D, where the chiplets are set beside each other and connected using short, dense interconnects. Momentum for this type of integration will likely only grow now that most of the major manufacturers have agreed on a 2.5D chiplet-to-chiplet communications standard.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}