Astrobee Will Find Astronauts’ Lost Socks

It'll be up to robots to keep space stations clean and functional while humans are away

3 min read
Astrobee Will Find Astronauts’ Lost Socks
Rendering: NASA Ames

At some point in the not too distant future, NASA wants to put a permanent space station called Gateway in orbit around the moon. Unlike the International Space Station with its permanent astronaut residents, Gateway will mostly be a transit point, a staging area for astronauts heading to the lunar surface or, eventually, to Mars. NASA expects that Gateway will spend a lot of time empty (it may only be crewed for a total of six weeks a year), but it'll need to be ready to welcome astronauts whenever they arrive, offering a safe, warm, and air-filled space. So who's going to keep an otherwise empty space station ship-shape and Bristol fashion? Robots, that's who!


During the test, the small, cube-shaped robot adeptly navigated the station to find the location designated as a "vent" used for cabin air circulation, and used computer vision to automatically detect the foreign object blocking the vent – an "astronaut sock," represented by a printed image of a sock. Then, Bumble called for help to clear the blockage. For its next test, Bumble completed a survey of Bay 6 of the space station's Japanese Exploration Module, building a high-resolution multi-sensor 3D map. During this journey, Bumble found itself bumping into and untangling itself from stray cables, and coping with simulated space-to-ground communication interruptions. It ultimately persevered and completed its mission objectives, with a little timely help from ground operators.

The goal of NASA's Integrated System for Autonomous and Adaptive Caretaking project, or ISAAC, is for the autonomous systems already on board space stations (like the life support system, power system, that sort of thing) to work with mobile autonomous or semi-autonomous robots to manage any situations that require a physical intervention. NASA uses a micrometeoroid strike as an example—the only way of dealing with that is to find where the hole is, grab a patch, and slap it on, and that means a robotic system capable of moving around and manipulating objects.

Even with its cute little arm, Astrobee isn't really intended to do all that much manipulation, and it'll almost certainly need help keeping an otherwise empty space station up to snuff. It seems likely that some of this help will come from Robonaut 2, which we're hoping will return to the ISS sometime this year to resume testing that it was engaged in until it ran into some, uh, issues. But once it's back on station with its legs attached, R2 can start wandering around and doing (very slowly and carefully) many of the same tasks that astronauts do. That's always been one of the goals of R2, although on Gateway, it'll be doing chores instead of the astronauts, rather than alongside them on the ISS. And there are more robots that could potentially join the ISAAC project as well, like GITAI's arm, which will undergo testing on the ISS after it launches on the next SpaceX flight.

The ISAAC team is now engaged in its second phase of testing aboard the station, which focuses on managing multiple robots as they transport cargo between an uncrewed space station and an uncrewed visiting cargo spacecraft. In addition to testing ISAAC with these new variables, the team is adding an improved operator interface to simplify managing the vehicle-robot systems. In the third and final phase of testing, the team will throw even more difficult fault scenarios at ISAAC, such as mock cabin air leaks or fires, and develop robust techniques to respond to anomalies that occur when responding to these simulated crises.

While the ISS and Gateway will both be close enough to Earth to allow humans to step in whenever necessary, either through supervised autonomy or full teleoperation, longer term ISAAC is pushing towards the kind of increased robotic autonomy we're going to need for Mars exploration. Ideally, by the time humans get to Mars we'll have a base all set up and ready to go in advance, and robots are likely to be the ones doing the literal, and metaphorical, heavy lifting.

The Conversation (0)

Can This DIY Rocket Program Send an Astronaut to Space?

Copenhagen Suborbitals is crowdfunding its crewed rocket

15 min read
Vertical
Five people stand in front of two tall rockets. Some of the people are wearing space suits and holding helmets, others are holding welding equipment.

Copenhagen Suborbitals volunteers are building a crewed rocket on nights and weekends. The team includes [from left] Mads Stenfatt, Martin Hedegaard Petersen, Jørgen Skyt, Carsten Olsen, and Anna Olsen.

Mads Stenfatt
Red

It was one of the prettiest sights I have ever seen: our homemade rocket floating down from the sky, slowed by a white-and-orange parachute that I had worked on during many nights at the dining room table. The 6.7-meter-tall Nexø II rocket was powered by a bipropellant engine designed and constructed by the Copenhagen Suborbitals team. The engine mixed ethanol and liquid oxygen together to produce a thrust of 5 kilonewtons, and the rocket soared to a height of 6,500 meters. Even more important, it came back down in one piece.

That successful mission in August 2018 was a huge step toward our goal of sending an amateur astronaut to the edge of space aboard one of our DIY rockets. We're now building the Spica rocket to fulfill that mission, and we hope to launch a crewed rocket about 10 years from now.

Copenhagen Suborbitals is the world's only crowdsourced crewed spaceflight program, funded to the tune of almost US $100,000 per year by hundreds of generous donors around the world. Our project is staffed by a motley crew of volunteers who have a wide variety of day jobs. We have plenty of engineers, as well as people like me, a pricing manager with a skydiving hobby. I'm also one of three candidates for the astronaut position.

Keep Reading ↓ Show less