Arm Flexible Access for Automotive Applications

Experiment and Design Innovative Automotive Systems

1 min read
Arm Self-Driving

The power of computing has profoundly influenced our lives and we place a high degree of trust in our electronic systems every day. In applications areas such as automotive, the consequences of a system failing or going wrong can be serious and even potentially life-threatening. Trust in automotive systems is crucial and only possible because of functional safety: A system's ability to detect, diagnose and safely mitigate the occurrence of any fault.

The application of safety is critical in the automotive industry, but how do we then balance safety and innovation in this rapidly transforming industry?

Arm Flexible Access lowers the barriers to rapid innovation and opens the doors to leading technology with access to a wide range of Arm IP, support, tools, and training. Arm Flexible Access adds safety technologies and features to make it easier for developers in the automotive industry and other safety-related industries to create SoCs and attain certification for industry safety standards.

Arm Flexible Access also enables more experimentation for those designing innovative automotive systems, which may involve self-driving capabilities or electrification of powertrain, allowing developers to find the most efficient way of balancing functionality with the level of safety required. Different architectures and mixtures of IP can be accessed, evaluated, optimized redesigned to achieve the best solution, which can then be taken to certification more easily.

To see the range of IP available in Arm Flexible Access suited for automotive applications, please visit our Automotive specific Flexible Access page.

The Conversation (0)

Europe Expands Virtual Borders To Thwart Migrants

Our investigation reveals that Europe is turning to remote sensing to detect seafaring migrants so African countries can pull them back

14 min read
A photo of a number of people sitting in a inflatable boat on the water with a patrol ship in the background.

Migrants in a dinghy accompanied by a Frontex vessel at the village of Skala Sikaminias, on the Greek island of Lesbos, after crossing the Aegean sea from Turkey, on 28 February 2020.

ASSOCIATED PRESS

It was after midnight in the Maltese search-and-rescue zone of the Mediterranean when a rubber boat originating from Libya carrying dozens of migrants encountered a hulking cargo ship from Madeira and a European military aircraft. The ship’s captain stopped the engines, and the aircraft flashed its lights at the rubber boat. But neither the ship nor the aircraft came to the rescue. Instead, Maltese authorities told the ship’s captain to wait for vessels from Malta to pick up the migrants. By the time those boats arrived, three migrants had drowned trying to swim to the idle ship.

The private, Malta-based vessels picked up the survivors, steamed about 237 kilometers south, and handed over the migrants to authorities in Libya, which was and is in the midst of a civil war, rather than return to Malta, 160 km away. Five more migrants died on the southward journey. By delivering the migrants there, the masters of the Maltese vessels, and perhaps the European rescue authorities involved, may have violated the international law of the sea, which requires ship masters to return people they rescue to a safe port. Instead, migrants returned to Libya over the last decade have reported enslavement, physical abuse, extortion, and murders while they try to cross the Mediterranean.

If it were legal to deliver rescued migrants to Libya, it would be as cheap as sending rescue boats a few extra kilometers south instead of east. But over the last few years, Europe’s maritime military patrols have conducted fewer and fewer sea rescue operations, while adding crewed and uncrewed aerial patrols and investing in remote-sensing technology to create expanded virtual borders to stop migrants before they get near a physical border.

Keep Reading ↓Show less
{"imageShortcodeIds":["29177566"]}