Aquatic Fixed-Wing Drone Could Lake-Hop Across Canada

With a clever mechanism that allows it to efficiently take off and land on water, this drone could use solar charging to travel around lakes all summer

3 min read
This aquatic drone has a clever mechanism that allows it to efficiently take off and land on water
With a clever mechanism that allows it to efficiently take off and land on water, this drone could use solar charging to travel around lakes all summer.
Image: University of Sherbrooke

Fixed-wing drones are the way to go for efficient flying, but they pose challenges for long term autonomy because of how demanding they are when it comes to takeoffs and landings. You need a nice big flat area, and usually you need infrastructure support. A drone that needs to operate for days or weeks at a time completely on its own can’t rely on either, which means you need to get creative.

At ICRA this week, researchers from the University of Sherbrooke in Canada have gotten creative, and came up with a very clever design for a fixed wing drone called SUWAVE (Sherbrooke University Water-Air VEhicle) that uses lakes as landing pads. It crash lands in them, recharges with solar power, and then takes off again with a brilliant hinged propeller.

Saw that cool slow-motion footage of a mallard duck taking off? “That was the inspiration for the project,” Professor Alexis Lussier Desbiens from the University of Sherbrooke tells us.

To do long range, long endurance flight, a drone really needs to be a fixed-wing design, since there’s just no way to get the kind of efficiency you need out of a rotorcraft. Once you’ve accepted this, you have to start figuring out how to make the kinds of compromises that fixed-wing aircraft demand: namely, launch and landing. Launching is difficult because a fixed wing drone needs to be clear of the ground for its prop to work and also needs a certain amount of velocity to get airborne.

Aquatic drone can land and take-off from water SUWAVE can use any one of a variety of techniques to crash land face first in the nearest lake. It looks violent, but the 584-gram drone is only being subjected to about 15 g’s of deceleration, which is well within what it’s built to handle. Image: University of Sherbrooke

Dealing with these compromises often involves stuff like catapults and nets, which are impractical for long term autonomy. Other options include hybrids like tailsitters or drones with wings as well as extra props to let them take off and land vertically. These systems, however, are complicated and inefficient, and you still have to figure out how reliably get them to find places to safely land. SUWAVE manages to solve all of these problems by going aquatic, which makes it vaguely startling that nobody else seems to have come up with this idea before.

The approach to landing is simple: SUWAVE can use any one of a variety of techniques to crash land face first in the nearest lake. It looks violent, but the 584-gram drone is only being subjected to about 15 g’s of deceleration, which is well within what it’s built to handle. Needless to say, it’s waterproof, and it floats.

Aquatic drone can land and take-off from water like a duck To take off, the drone releases a small latch, and the center, heavier section of its body is free to pivot, causing the motor and propeller to point up into the air. Image: University of Sherbrooke

To take off again, the drone releases a small latch, and the center section of its body (which contains the battery at the back and the motor at the front) is free to pivot around the front of the wing. Since the battery is towards the back, the center section sinks, which causes the motor and prop to point up into the air. When the motor fires up, the drone is lifted out of the water and into the air, and the center section swings back into alignment with the wing and latches in tightly. Besides the latch, the takeoff technique is entirely passive, without the need for any kind of sensors or actuators, and it can also be used to flip the aircraft over if necessary.

In addition to offering easy to spot and reliably flat and cushiony surfaces for landing and takeoff, lakes are ideal for solar charging. SUWAVE is being equipped with solar cells on its upper wing surfaces, so that it can float there peacefully and recharge its batteries. The researchers say that by flying from lake to lake in Canada (a distance of just 20 km on average separates one Canadian lake from the next), the SUWAVE drone should be able to travel very long distances by lake hopping, recharging, and then repeating the process. We’re definitely looking forward to more details this summer as the drone gets put through its paces.

“Design of a Passive Vertical Takeoff and Landing Aquatic UAV,” by Richard-Alexandre Peloquin, Dominik Thibault, and Alexis Lussier Desbiens from Université de Sherbrooke in Canada, was presented at ICRA 2017 in Singapore.

The Conversation (0)

How the U.S. Army Is Turning Robots Into Team Players

Engineers battle the limits of deep learning for battlefield bots

11 min read
Robot with threads near a fallen branch

RoMan, the Army Research Laboratory's robotic manipulator, considers the best way to grasp and move a tree branch at the Adelphi Laboratory Center, in Maryland.

Evan Ackerman
LightGreen

This article is part of our special report on AI, “The Great AI Reckoning.

"I should probably not be standing this close," I think to myself, as the robot slowly approaches a large tree branch on the floor in front of me. It's not the size of the branch that makes me nervous—it's that the robot is operating autonomously, and that while I know what it's supposed to do, I'm not entirely sure what it will do. If everything works the way the roboticists at the U.S. Army Research Laboratory (ARL) in Adelphi, Md., expect, the robot will identify the branch, grasp it, and drag it out of the way. These folks know what they're doing, but I've spent enough time around robots that I take a small step backwards anyway.

The robot, named RoMan, for Robotic Manipulator, is about the size of a large lawn mower, with a tracked base that helps it handle most kinds of terrain. At the front, it has a squat torso equipped with cameras and depth sensors, as well as a pair of arms that were harvested from a prototype disaster-response robot originally developed at NASA's Jet Propulsion Laboratory for a DARPA robotics competition. RoMan's job today is roadway clearing, a multistep task that ARL wants the robot to complete as autonomously as possible. Instead of instructing the robot to grasp specific objects in specific ways and move them to specific places, the operators tell RoMan to "go clear a path." It's then up to the robot to make all the decisions necessary to achieve that objective.

Keep Reading ↓ Show less