The October 2022 issue of IEEE Spectrum is here!

Close bar

Aircraft Nanocomposites that Provide Early Warning System for Structural Failures

Researchers employ carbon nanotubes in aircraft composites to provide an early warning system to structural failures

1 min read
Aircraft Nanocomposites that Provide Early Warning System for Structural Failures

Nanotechnology is already having an impact on air travel, as evidenced by EasyJet’s testing of a nanocoating that will reduce wind drag and fuel consumption.

But if current research into new adhesives based on nanomaterials proves effective, the future of aircraft manufacturing could be altered significantly beyond just coatings and into the actual structures of the aircraft.

Researchers at the University of Toronto are looking into the use of multifunctional nanocomposites and adhesives that would be used in joining techniques for primary flight load structures and serve a double purpose of providing an early warning system for stresses on these structures and possible future failures.

This line of research builds on the already developing practice of using composites and adhesive bonding in the place of mechanical fastening or welding, such as with the new Airbus A380.

The University of Toronto researchers are working with carbon nanotubes to develop their multifunctional adhesives (smart adhesives) due to their electrical conductivity.

Earlier this year, I covered research coming out of MIT that would use carbon nanotubes in a method for detecting internal damage to composites.

In the MIT research, an electrical current would be applied to the composites that would heat up the carbon nanotubes and allow the use of thermographic camera for detecting flaws without the cumbersome need for heating the entire surface of the aircraft. 

The Canadian researchers are attempting something a bit more ambitious in that the method "employs a novel network recognition approach to determine current continuity and critical percolation level."

The Conversation (0)

3D-Stacked CMOS Takes Moore’s Law to New Heights

When transistors can’t get any smaller, the only direction is up

10 min read
An image of stacked squares with yellow flat bars through them.
Emily Cooper

Perhaps the most far-reaching technological achievement over the last 50 years has been the steady march toward ever smaller transistors, fitting them more tightly together, and reducing their power consumption. And yet, ever since the two of us started our careers at Intel more than 20 years ago, we’ve been hearing the alarms that the descent into the infinitesimal was about to end. Yet year after year, brilliant new innovations continue to propel the semiconductor industry further.

Along this journey, we engineers had to change the transistor’s architecture as we continued to scale down area and power consumption while boosting performance. The “planar” transistor designs that took us through the last half of the 20th century gave way to 3D fin-shaped devices by the first half of the 2010s. Now, these too have an end date in sight, with a new gate-all-around (GAA) structure rolling into production soon. But we have to look even further ahead because our ability to scale down even this new transistor architecture, which we call RibbonFET, has its limits.

Keep Reading ↓Show less