AirBurr MAV Navigates by Bouncing Off Walls and Floors

When you have a robot that can't crash, navigation gets a whole lot easier

2 min read
AirBurr MAV Navigates by Bouncing Off Walls and Floors

A lot of UAV research is focused on making flying robots that can navigate by themselves using sophisticated sensor systems, intelligently avoiding crashing into things. This is a fantastic goal to have, but it's not easy. EPFL is doing away with just about all of that with a new version of AirBurr, a robot that's specifically designed to run into everything and crash all the time, building maps as it does so.

As we saw last June, AirBurr has undergone a remarkable evolution since 2009. And even in 2012, they were only on version 8, while the current version is up to 11. AirBurr is a coaxial UAV that is totally comfortable with collisions, thanks to its shock absorbing roll cage and self-righting mechanism:

Its rigid central core is surrounded by specially-designed tetrahedral-shaped springs that buckle to efficiently absorb impact energy. The springs protect the AirBurr from impacts with obstacles and can be used to physically interact with objects while in flight. If a collision results in a fall to the ground, the robot's Active Recovery System, comprised of a system of spring-loaded carbon fibre legs, allow it to return to an upright position and take off again.

Here it is in action:

Obviously, having just four sensors makes AirBurr kinda terrible at obstacle avoidance, but the simple fact is that it just doesn't matter: it may not be efficient at finding its way down a hallway, but it does so with an absolute bare minimum of sensors, and it wouldn't care if the hallway was pitch black or full of smoke or otherwise a place in which conventional vision would be out of luck. This vastly increases the number of environments in which AirBurr can be used.

The mapping behavior is especially cool, and if the resulting light paintings remind you of anything, it's because AirBurr employs a random direction algorithm that's similar to the one used by some robotic vacuum cleaners.

This sort of behavior is based in no small part on insects, which also have very primitive sensing systems combined with body structures that allow them to survive numerous collisions. Bugs may not be particularly smart, but as it turns out, big brains and complex sensors aren't always necessary for robust flight and navigation.

We'll see more of this research at ICRA in May from the EPFL team (which includes Briod Adrien, Adam Klaptocz, Kornatowski Przemyslaw Mariusz, and Zufferey Jean-Christophe), but there's a hint on EPFL's website as to where the researchers are taking this: they'll be presenting a paper entitled "A Perching Mechanism for Flying Robots Using a Fibre-Based Adhesive." Cool!

[ AirBurr ]

Thanks Adam!

The Conversation (0)

The Bionic-Hand Arms Race

The prosthetics industry is too focused on high-tech limbs that are complicated, costly, and often impractical

12 min read
Horizontal
A photograph of a young woman with brown eyes and neck length hair dyed rose gold sits at a white table. In one hand she holds a carbon fiber robotic arm and hand. Her other arm ends near her elbow. Her short sleeve shirt has a pattern on it of illustrated hands.

The author, Britt Young, holding her Ottobock bebionic bionic arm.

Gabriela Hasbun. Makeup: Maria Nguyen for MAC cosmetics; Hair: Joan Laqui for Living Proof
DarkGray

In Jules Verne’s 1865 novel From the Earth to the Moon, members of the fictitious Baltimore Gun Club, all disabled Civil War veterans, restlessly search for a new enemy to conquer. They had spent the war innovating new, deadlier weaponry. By the war’s end, with “not quite one arm between four persons, and exactly two legs between six,” these self-taught amputee-weaponsmiths decide to repurpose their skills toward a new projectile: a rocket ship.

The story of the Baltimore Gun Club propelling themselves to the moon is about the extraordinary masculine power of the veteran, who doesn’t simply “overcome” his disability; he derives power and ambition from it. Their “crutches, wooden legs, artificial arms, steel hooks, caoutchouc [rubber] jaws, silver craniums [and] platinum noses” don’t play leading roles in their personalities—they are merely tools on their bodies. These piecemeal men are unlikely crusaders of invention with an even more unlikely mission. And yet who better to design the next great leap in technology than men remade by technology themselves?

Keep Reading ↓Show less