The December 2022 issue of IEEE Spectrum is here!

Close bar

AI to Help Power Grids Resist Disruptions

A new project explores how artificial intelligence could help power grids anticipate and recover from natural disasters

2 min read
An illustration of light bulbs piled in the shape of a human brain.
Photo-illustration: John Lund/Getty Images

The U.S. Department of Energy will explore whether artificial intelligence could help electric grids handle power fluctuations, avoid failures, resist damage, and recover faster from major storms, cyberattacks, solar flares and other disruptions.

A new project, called GRIP, for Grid Resilience and Intelligence Project, was awarded up to $6 million over three years on September 12 by the U.S. Department of Energy. GRIP is the first project to use artificial intelligence (AI) to help power grids deal with disturbances, says Sila Kiliccote, GRIP's principal investigator and director of the Grid Integration, Systems and Mobility lab at the SLAC National Accelerator Laboratory in Menlo Park, Calif.

GRIP will develop algorithms to learn how power grids work by analyzing smart meterdata, utility-scale SCADA (supervisory control and data acquisition) data, electric vehicle charging data, and even satellite and street-view imagery.

"By looking at satellite and street-view imagery, we can see where vegetation is growing with respect to power lines, how long it takes to grow, and anticipate what the effects of high winds might have on that vegetation, such as pulling trees onto power lines during storms," Kiliccote says.

The aim with GRIP is to address three different kinds of problems. "First we need to anticipate and get in front of grid events," Kiliccote says. "Next we'd like to minimize the effects of grid events when they do happen. Finally, after the event ends, we'd want to bring systems back as quickly as possible."

GRIP's first year is devoted to anticipating grid problems. Predictive analytics will help identify places where the electric grid is vulnerable to disruption so it can be reinforced, Kiliccote says.

The second year will aim to help grids absorb disruptions. For instance, a grid can be divided into virtual "islands," or micro-grids, that can be isolated to prevent a power disruption from spreading and taking down the entire grid.

The third year will focus on helping grids recover from events. "Ultimately, we'd like to see a grid that can run on its own, an autonomous grid like an autonomous car," Kiliccote says. "However, unlike autonomous cars, an autonomous grid will need to be able to handle additional components added to it while it is still running."

GRIP's partners not only include universities, but also utilities around the country and companies such as Tesla Motors. Some of the first places the project will test its data analytics platform are Southern California Edison, a leader in smart metering, and Packetized Energy, which helps grids manage distributed energy resources.

"One of our largest partners is the National Rural Electric Cooperative Association (NRECA), which represents more than 800 cooperatives that supplies electricity to something like 42 million people in 47 states," Kiliccote says. "The knowledge and tools we develop in GRIP could easily be adopted by NRECA's member coops."

Another GRIP partner, Lawrence Berkeley National Laboratory, will deploy and validate control systems it has developed for solar inverters that automatically convert the variable direct current from solar cells to alternating current that is fed into power grids. The aim is to help create power grids that can automatically reconfigure themselves to best use distributed energy resources such as wind and solar in ways that maximize reliability during both normal and emergency operations.

"Once we build our data analytics platform, we'll make it open source so a lot of academics can develop tools they can test on the platform," Kiliccote says. GRIP will run its AI systems on a currently unnamed partner's computing clusters, she says.

The Conversation (0)
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less