The December 2022 issue of IEEE Spectrum is here!

Close bar

Acoustic Holograms Form Ultrasonic Tractor Beams for Tiny Objects

For the first time, objects can be moved and spun in midair using a single ultrasonic array

3 min read
Acoustic Holograms Form Ultrasonic Tractor Beams for Tiny Objects

You've seen holograms before: they're images that seem to jump out of a flat surface, full of depth that you can experience through perspective changes and parallax cues. The three-dimensional effect that a hologram creates comes from the three dimensional light field that's created when photons diffract through the interference pattern on a holographic plate. It's essentially a structure made of light that gets projected out into space when the seemingly random pattern of features on the plate interact with each other.

Light isn't the only wave that can be manipulated to create structures in space; the same thing goes for sound waves. The structures generated by constructively and destructively interfering with ultrasonic waves are tangible things that can exert force on objects. Researchers at the Public University of Navarre in Spain have used ultrasonic acoustic holograms to manipulate things just like the tractor beam used by the crew of the USS Enterprise on the TV show Star Trek.

Acoustic levitation is usually accomplished with a pair of ultrasound emitter arrays, or with one array aimed at a reflector. A standing wave of ultrasound is formed between these two elements, and small particles can be suspended in the nodes of the wave. Varying the phase of the wave moves the nodes, causing particles to be transported along a single axis. This is cool stuff, but it only works if you have the thing you want to push around completely inside your device. That’s obviously less useful than it could be, and nothing like the Star Trek technology, which is, after all, the driving force behind all research everywhere.

img

Acoustic holograms offer a way to generate acoustic structures that are essentially 3-D objects made of sound. They're created by a single 20 by 20 ultrasonic phased array of 10 millimeter transducers generating 40 kilohertz ultrasonic sound waves with programmable relative phase modulation. Each structure consists of two elements: a holographic lens that's generated by making all of the emitted sound waves coincide in

imgImages: Asier Marzo, Bruce Drinkwater and Sriram Subramanian/Nature

phase at the focal point of the structure, and a second element that defines the type of structure around the focal point. To create a structure, the transducer array emits a holographic “signature” of sound waves that, combined with the holographic lens, yields a specific pattern of constructive and destructive sound waves that can "trap" small polystyrene particles up to 3 mm in diameter. The image [right] illustrates the phase modulations and holographic signatures of a "twin" structure, a "vortex" structure, and a "bottle" structure.

img

And the array of images [left] offer various visualizations of the vortex structure:

But the really cool bit is the system in action; note that the orientation of objects can be controlled as well as their position, and that multiple objects can be controlled at once:

The fact that you can create 3-D acoustic structures that can manipulate objects with just a single array is what's cool here, because not needing hardware on the other side of the object opens up all kinds of intriguing possibilities. According to the researchers, acoustic tractor beams “could be applied directly onto the skin with the manipulation taking place inside the body; similar to an ultrasound scanner but for manipulating particles (that is, drug capsules, kidney stones or micro-surgical instruments).” Or, they could be used to create "tangible displays."

At the moment, the size of the object that can be manipulated depends on the power of the transducers, so moving around (and perhaps even assembling) bigger and heavier stuff is certainly possible. We're not saying that it'll ever be possible to levitate people, because that would be ridiculous. But we're thinking it, because that would be awesome.

The Conversation (0)

Why Functional Programming Should Be the Future of Software Development

It’s hard to learn, but your code will produce fewer nasty surprises

11 min read
Vertical
A plate of spaghetti made from code
Shira Inbar
DarkBlue1

You’d expectthe longest and most costly phase in the lifecycle of a software product to be the initial development of the system, when all those great features are first imagined and then created. In fact, the hardest part comes later, during the maintenance phase. That’s when programmers pay the price for the shortcuts they took during development.

So why did they take shortcuts? Maybe they didn’t realize that they were cutting any corners. Only when their code was deployed and exercised by a lot of users did its hidden flaws come to light. And maybe the developers were rushed. Time-to-market pressures would almost guarantee that their software will contain more bugs than it would otherwise.

Keep Reading ↓Show less
{"imageShortcodeIds":["31996907"]}