The October 2022 issue of IEEE Spectrum is here!

Close bar

A Temporary Tattoo That Senses Through Your Skin

The Biostamp can replace today’s clunky biomedical sensors

14 min read
Photo of man holding circuit.
The Ultimate Wearable: John Rogers and his research team at the University of Illinois have developed a way of building circuits that act like skin, collect power wirelessly, and can be worn just about anywhere on the body.
Photo: Saverio Truglia

I turn the key to start the little Ford SUV I’ve rented for my visit to the University of Illinois at Urbana-Champaign, and a message flashes briefly on the dash: “Tire pressure low.” I ignore it. My own car is 12 years old; I’m not accustomed to a car that monitors its own health. Turns out, though, that the little Ford wasn’t kidding. The next morning I find the car has a flat tire.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The World's Largest Camera Is Nearly Complete

The future heart of the Vera C. Rubin Observatory will soon make its way to Chile

3 min read
A large black cylinder with a glass lens in front rests on a sturdy white structure in a bright room.

The LSST camera, eventually bound for the Vera C. Rubin Observatory in Chile, sits on its stand in a Bay Area cleanroom.

Jacqueline Ramseyer Orrell/SLAC National Accelerator Laboratory

The world’s largest camera sits within a nondescript industrial building in the hills above San Francisco Bay.

If all goes well, this camera will one day fit into the heart of the future Vera C. Rubin Observatory in Chile. For the last seven years, engineers have been crafting the camera in a cleanroom at the SLAC National Accelerator Laboratory in Menlo Park, California. In May 2023, if all goes according to plan, the camera will finally fly to its destination, itself currently under construction in the desert highlands of northern Chile.

Building a camera as complex as this requires a good deal of patience, testing, and careful engineering. The road to that flight has been long, and although there’s still some way to go before the end is in sight.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Lab Revisits the Task of Putting Common Sense in AI

New nonprofit Basis hopes to model human reasoning to inform science and public policy

5 min read
ai hand and human hand touching pointer fingers
iStock

The field of artificial intelligence has embraced deep learning—in which algorithms find patterns in big data sets—after moving on from earlier systems that more explicitly modeled human reasoning. But deep learning has its flaws: AI models often show a lack of common sense, for example. A new nonprofit, Basis, hopes to build software tools that advance the earlier method of modeling human reasoning, and then apply that method toward pressing problems in scientific discovery and public policy.

To date, Basis has received a government grant and a donation of a few million dollars. Advisors include Rui Costa, a neuroscientist who heads the Allen Institute in Seattle, and Anthony Philippakis, the chief data officer of the Broad Institute in Cambridge, Mass. In July, over tacos at the International Conference on Machine Intelligence, I spoke with Zenna Tavares, a Basis cofounder, and Sam Witty, a Basis research scientist, about human intelligence, problems with academia, and trash collection. The following transcript has been edited for brevity and clarity.

Keep Reading ↓Show less

Modeling Microfluidic Organ-on-a-Chip Devices

Register for this webinar to enhance your modeling and design processes for microfluidic organ-on-a-chip devices using COMSOL Multiphysics

1 min read
Comsol Logo
Comsol

If you want to enhance your modeling and design processes for microfluidic organ-on-a-chip devices, tune into this webinar.

You will learn methods for simulating the performance and behavior of microfluidic organ-on-a-chip devices and microphysiological systems in COMSOL Multiphysics. Additionally, you will see how to couple multiple physical effects in your model, including chemical transport, particle tracing, and fluid–structure interaction. You will also learn how to distill simulation output to find key design parameters and obtain a high-level description of system performance and behavior.

Keep Reading ↓Show less