The December 2022 issue of IEEE Spectrum is here!

Close bar

A Technically Sweet Fuel Cell

Scientists develop a fuel cell powered by bacteria that converts sugar into electricity

3 min read

17 September 2003—Before too long, maybe, you won’t bother looking for a power outlet to recharge your dead cellphone battery and instead you’ll go get your sugar bowl. That admittedly far-fetched scenario now seems a little more plausible thanks to scientists who have developed a fuel cell powered by a bacterium that converts sugar into electricity with an 80-plus percent efficiency. Besides providing energy for handheld devices, their microbial fuel cell might also be used to produce electric power on a larger scale from sugars found in waste material—even in sewage in remote communities.

In the October issue of Nature Biotechnology , microbiology professor Derek Lovley and postdoctoral researcher Swades Chaudhuri, both at the University of Massachusetts at Amherst, report that the microbe Rhodoferax ferrireducens can metabolize glucose and other types of sugar into carbon dioxide, producing electrons in the process. The microbe was isolated from marine sediments collected from Oyster Bay, Va.

Keep Reading ↓Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions
This photograph shows a car with the words “We Drive Solar” on the door, connected to a charging station. A windmill can be seen in the background.

The Dutch city of Utrecht is embracing vehicle-to-grid technology, an example of which is shown here—an EV connected to a bidirectional charger. The historic Rijn en Zon windmill provides a fitting background for this scene.

We Drive Solar

Hundreds of charging stations for electric vehicles dot Utrecht’s urban landscape in the Netherlands like little electric mushrooms. Unlike those you may have grown accustomed to seeing, many of these stations don’t just charge electric cars—they can also send power from vehicle batteries to the local utility grid for use by homes and businesses.

Debates over the feasibility and value of such vehicle-to-grid technology go back decades. Those arguments are not yet settled. But big automakers like Volkswagen, Nissan, and Hyundai have moved to produce the kinds of cars that can use such bidirectional chargers—alongside similar vehicle-to-home technology, whereby your car can power your house, say, during a blackout, as promoted by Ford with its new F-150 Lightning. Given the rapid uptake of electric vehicles, many people are thinking hard about how to make the best use of all that rolling battery power.

Keep Reading ↓Show less