A Perfect Storm of Planetary Proportions

The approach of the solar maximum is an urgent reminder that power grids everywhere are more vulnerable than ever to geomagnetic effects

11 min read
Illustration of a solar storm
Illustration: Solar Dynamics Observatory/NASA

Luminous fingers of intense red, green, and violet light flicker and pulse across the northern and southern skies like a vast cosmic conflagration. Within minutes, millions of people are tweeting, texting, and blogging about the wondrous sight. But then the sky turns a deep blood red, and fascination turns to panic.

Linked to the celestial spectacle are enormous fluctuations of the magnetic field in Earth's magnetosphere, which are causing immense flows of electric current in the upper atmosphere over much of the planet. Those huge currents disturb Earth's normally quiescent magnetic field, which in turn induces surges of current in electrical, telecommunications, and other networks across entire continents. Streetlights flicker out; electricity is lost. A massive planetary blackout has occurred, leaving vast swaths of North and South America, Europe, Australia, and Asia without power.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The EV Transition Explained: Can the Grid Cope?

Palo Alto offers a glimpse at the challenges municipalities and utilities face

8 min read
A man plugging a charger into an outlet

Enel's Juicebox 240-volt Level 2 charger for electric vehicles.

Enel X Way USA

There have been vigorous debates pro and con in the US and elsewhere over whether the electric grids can support EVs at scale. The answer is a nuanced “perhaps.” It depends on several factors, including the speed of grid component modernization, the volume of EV sales, where they occur and when, what kinds of EV charging are being done and when, regulator and political decisions, and critically, economics.

The city of Palo Alto, California is a microcosm of many of the issues involved. Palo Alto boasts the highest adoption rate of EVs in the US: In 2020, one in six of the town’s 25,000 households owned an EV. Of the 52,000 registered vehicles in the city, 4,500 are EVs, and on workdays, commuters drive another 3,000 to 5,000 EVs enter the city. Residents can access about 1000 charging ports spread among over 277 public charging stations, with another 3,500 or so charging ports located at residences.

Keep Reading ↓Show less

The James Webb Space Telescope was a Career-Defining Project for Janet Barth

NASA’s first female engineering chief was there from conception to first light

5 min read
portrait of older woman in light blue jacket against dark gray background Info for editor if needed:
Sue Brown

Janet Barth spent most of her career at the Goddard Space Flight Center, in Greenbelt, Md.—which put her in the middle of some of NASA’s most exciting projects of the past 40 years.

She joined the center as a co-op student and retired in 2014 as chief of its electrical engineering division. She had a hand in Hubble Space Telescope servicing missions, launching the Lunar Reconnaissance Orbiter and the Magnetospheric Multiscale mission, and developing the James Webb Space Telescope.

Keep Reading ↓Show less

Designing Fuel Cell Systems Using System-Level Design

Modeling and simulation in Simulink and Simscape

1 min read
Designing Fuel Cell Systems Using System-Level Design

Design and simulate a fuel cell system for electric mobility. See by example how Simulink® and Simscape™ support multidomain physical modeling and simulation of fuel cell systems including thermal, gas, and liquid systems. Learn how to select levels of modeling fidelities to meet your needs at different development stages.