A New Twist on Memristance

NIST researchers create flexible memory circuits that act like memristors

3 min read

10 June 2009—Researchers at the U.S. National Institute of Standards and Technology (NIST), in Gaithersburg, Md., report in the July 2009 issue of IEEE Electron Device Letters that they have created a low-power, inexpensive flexible memory that has the properties of a memristor. Memristors can be used to make brainlike circuits and nanoelectronic memories, because they ”remember” the amount of current that has flowed through them, and that memory is reflected in the device’s resistance.

Though these devices were first theorized in 1971, no one was able to make a practical memristor until Hewlett-Packard figured out how to do it in 2008. Producing a flexible form of memristor could make a fourth fundamental circuit element usable in implantable medical electronics where stiff, brittle silicon wouldn’t work, says Curt A. Richter, head of the Nanoelectronic Device Metrology Project at NIST’s Semiconductor Electronics Division.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less