Close

A Foucault Pendulum on a Chip

A MEMS microgyroscope mimics a 19th-century instrument's mechanism to boost abilities of inertial guidance systems

3 min read

1 February 2011—A new type of microscopic gyroscope could lead to better inertial guidance systems for missiles, better rollover protection in automobiles, and balance-restoring implants for the elderly.

Researchers from the MicroSystems Laboratory at the University of California, Irvine (UCI), described what they’re calling a Foucault pendulum on a chip at last week’s IEEE 2011 conference on microelectromechanical systems (MEMS) in Cancun, Mexico. A Foucault pendulum is a large but simple mechanism used to demonstrate Earth’s rotation. The device the UCI engineers built is a MEMS gyroscope made of silicon that is capable of directly measuring angles faster and more accurately than current MEMS-based gyroscopes.

Keep Reading ↓ Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

A Circuit to Boost Battery Life

Digital low-dropout voltage regulators will save time, money, and power

11 min read
Image of a battery held sideways by pliers on each side.
Edmon de Haro

YOU'VE PROBABLY PLAYED hundreds, maybe thousands, of videos on your smartphone. But have you ever thought about what happens when you press “play”?

The instant you touch that little triangle, many things happen at once. In microseconds, idle compute cores on your phone's processor spring to life. As they do so, their voltages and clock frequencies shoot up to ensure that the video decompresses and displays without delay. Meanwhile, other cores, running tasks in the background, throttle down. Charge surges into the active cores' millions of transistors and slows to a trickle in the newly idled ones.

Keep Reading ↓ Show less