The December 2022 issue of IEEE Spectrum is here!

Close bar

A $2 Million Contest Seeks a Real-World Pied Piper to Solve Big Internet Challenges

As fictional geniuses in HBO’s “Silicon Valley” seek to reinvent the Internet, Mozilla and the NSF offer $2 million in prizes to decentralize it in the real world

2 min read
The fictional Richard Hendricks explains an Internet of mobile devices in HBO's “Silicon Valley”
The fictional Richard Hendricks explains an Internet of mobile devices in HBO's “Silicon Valley”
Photo: HBO

In Sunday’s season finale of HBO’s Silicon Valley, fictional startup Pied Piper’s attempt to create a decentralized Internet appears to have spectacularly failed, thanks to mobile phone explosions and a disastrous attempt to move a server. Then the distraught founders discover that their network is actually ticking along just fine. But how? It turns out that it has jumped to smart refrigerators. Now that’s resilient!

The Internet of refrigerators is, of course, fiction. But could an Internet that is this resilient—or nearly so—be a reality? Mozilla and the U.S. National Science Foundation think it’s possible, and aim to accelerate its creation by offering $2 million in prize money to teams that invent it—or at least get close.

“We’ve picked two of the most challenging situations in which people are disconnected from the Internet,” Mozilla program manager Mehan Jayasuriya told me. These are, “Connecting people in the U.S. who don’t have reliable or affordable Internet and connecting people as quickly as possible after a major disaster, when the traditional networks go down.”

Mozilla and the NSF are addressing that first group—an estimated 34 million people—with the “Smart-Community Networks Challenge” that seeks wireless technology designed to enhance Internet connectivity by building on top of existing infrastructure.

For the second group, there’s the “Off-The-Grid Internet Challenge.” That contest seeks technology that can be quickly deployed after a disaster to allow people to communicate when Internet access is gone.

The teams submit initial designs, and then later, working prototypes. Prizes at the design stage range from $10,000 to $60,000. At the working prototype stage, the stakes range from $50,000 to $400,000, with one of the top awards given for each challenge category.

Judging criteria for both challenges include affordability, feasibility, social impact, and scalability. Off-the-grid technology also has to be portable and have a portable power source. The smart community networks technology will also consider density, range, bandwidth, and security. Potential entrants must submit an intent to apply form by 15 October; the whole thing wraps up next August.

“A lot of projects out there address some parts of these problems,” Jayasuriya says. “With $2 million on the table, we are hoping this challenge encourages people to fill their technologies out.”

Were Pied Piper a real company, it would have a decent chance at winning some of that cash. Says Jayasuriya:

It’s the kind of thing we are looking for—a big idea, a crazy idea, an idea about how you piggyback on things that already exist. Pied Piper’s approach is like that, looking at all the phones out there and thinking that these phones have radios, and power, and CPUs, so why wouldn’t you take them and turn them into nodes on a network.

Jayasuriya is hopeful that the contest will lead to real change. The structure of the competition, he says, is designed to push design teams to build working prototypes, so the winner, with $400,000 in seed money, will be well positioned to attract partnerships or investment capital, and get the product out into the world.

A version of this post appears in the September 2017 print issue as “A $2 Million Contest Seeks Solutions to Big Internet Challenges.”

The Conversation (0)

Metamaterials Could Solve One of 6G’s Big Problems

There’s plenty of bandwidth available if we use reconfigurable intelligent surfaces

12 min read
An illustration depicting cellphone users at street level in a city, with wireless signals reaching them via reflecting surfaces.

Ground level in a typical urban canyon, shielded by tall buildings, will be inaccessible to some 6G frequencies. Deft placement of reconfigurable intelligent surfaces [yellow] will enable the signals to pervade these areas.

Chris Philpot

For all the tumultuous revolution in wireless technology over the past several decades, there have been a couple of constants. One is the overcrowding of radio bands, and the other is the move to escape that congestion by exploiting higher and higher frequencies. And today, as engineers roll out 5G and plan for 6G wireless, they find themselves at a crossroads: After years of designing superefficient transmitters and receivers, and of compensating for the signal losses at the end points of a radio channel, they’re beginning to realize that they are approaching the practical limits of transmitter and receiver efficiency. From now on, to get high performance as we go to higher frequencies, we will need to engineer the wireless channel itself. But how can we possibly engineer and control a wireless environment, which is determined by a host of factors, many of them random and therefore unpredictable?

Perhaps the most promising solution, right now, is to use reconfigurable intelligent surfaces. These are planar structures typically ranging in size from about 100 square centimeters to about 5 square meters or more, depending on the frequency and other factors. These surfaces use advanced substances called metamaterials to reflect and refract electromagnetic waves. Thin two-dimensional metamaterials, known as metasurfaces, can be designed to sense the local electromagnetic environment and tune the wave’s key properties, such as its amplitude, phase, and polarization, as the wave is reflected or refracted by the surface. So as the waves fall on such a surface, it can alter the incident waves’ direction so as to strengthen the channel. In fact, these metasurfaces can be programmed to make these changes dynamically, reconfiguring the signal in real time in response to changes in the wireless channel. Think of reconfigurable intelligent surfaces as the next evolution of the repeater concept.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}