3-D Printing Takes Shape

In 2012, 3-D printing technology will go from prototyping to production

4 min read
Photo: Randi Silberman Klett
Too, Too Solid: The robots (above, at left) are from My Robot Nation; the movable concentric rings (created that way—no assembly required) and the folded-overbicycle chain are from Stratasys;the gold-plated metal matrix andthe glazed ceramic vase (right) come from Ponoko.
Photo: Randi Silberman Klett

The promise of 3-D printing is tantalizing: You envision something, draw it with the right software, and then print it in three dimensions—regardless of how many parts it has, how they interlock, or whether they will even be accessible once your creation is completed. With this strategy, anyone can make almost anything. Someday, lots of stuff will be manufactured this way, on demand.

Full realization of that promise remains a long way off, but the bandwagon is rolling. Thousands of machines, ranging from kit-built tabletop models to commercial behemoths capable of printing the body of a small car, are out in the world producing parts. And starting this year, the United States’ Defense Advanced Research Projects Agency is planning to put 1000 production-quality 3-D printers in high schools across the United States as part of its Manufacturing Experimentation and Outreach program. Even if you don’t have access to one of those machines, you can get a free download of Autodesk 123D, a 3-D computer-aided-design program still in public beta testing, which gives you push-button connections to online 3-D-printing services, of which there are now dozens, if not hundreds. So if you’re not already printing objects on a regular basis, there’s a good chance that in 2012 you will be.

Keep reading... Show less

Stay ahead of the latest trends in technology. Become an IEEE member.

This article is for IEEE members only. Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Print an Arduino-Powered Color Mechanical Television

Anyone with a 3D printer can make a new twist on the oldest type of TV

5 min read
A disk with a spiral of holes is mounted on a motor. Buttons and switches form a control panel below it.

Early 2020s 3D printing meets late 1920s mechanical television.

James Provost

Before flat screens, before even cathode-ray tubes, people watched television programs at home thanks to the Nipkow disk. Ninety years ago in places like England and Germany, broadcasters transmitted to commercially produced black-and-white electromechanical television sets, such as the Baird Televisor, that used these disks to produce moving images. This early programming established many of the formats we take for granted today, such as variety shows and outside broadcasts.

The size and weight of a Nipkow disk makes a display with more than a few dozen scan lines impracticable (in stark contrast to modern screens with thousands of lines). But when a mechanical TV is fed a moving image, the result is surprisingly watchable. And Nipkow displays are fascinating in their simplicity—no high voltages or complex matrices. So I wondered: What was the easiest way to build such a display that would produce a good quality image?

Keep Reading ↓ Show less
{"imageShortcodeIds":[]}

World Builders Put Happy Face On Superintelligent AI

The Future of Life Institute’s contest counters today’s dystopian doomscapes

4 min read
A cityscape ensconced in an iridescent dome of light and shapes.
Hiroshi Watanabe/Getty Images

One of the biggest challenges in a world-building competition that asked teams to imagine a positive future with superintelligent AI: Make it plausible.

The Future of Life Institute, a nonprofit that focuses on existential threats to humanity, organized the contest and is offering a hefty prize purse of up to US $140,000, to be divided among multiple winners. Last week FLI announced the 20 finalists from 144 entries, and the group will declare the winners on 15 June.

Keep Reading ↓ Show less

Automating Road Maintenance With LiDAR Technology

Team from SICK’s TiM$10K Challenge creates system to automate road maintenance

4 min read

Developed by a team of students at Worcester Polytechnic Institute as part of SICK's TiM$10K Challenge, their ROADGNAR system uses LiDAR to collect detailed data on the surface of a roadway.

SICK

This is a sponsored article brought to you by SICK Inc..

From advanced manufacturing to automated vehicles, engineers are using LiDAR to change the world as we know it. For the second year, students from across the country submitted projects to SICK's annual TiM$10K Challenge.

Keep Reading ↓ Show less