Photo: Lexus
Photo: Lexus

This Year’s
Winning Autos

For years, automakers have teased us with sleek concept cars that ditch conventional side mirrors in favor of digital cameras. Now, Lexus becomes the first automaker to bring the technology to showrooms, albeit only in Japan for now: The all-new ES 350 sedan will beat the Audi E-tron’s “virtual mirrors” to market by mere months.

Lexus calls theirs the Digital Side-View Monitor: a pair of slender exterior stalks housing digital cameras that beam a high-definition view to 5.0-inch LCD screens mounted on either side of the cabin. The main benefit is to save fuel by reducing the aerodynamic drag of chunky conventional mirrors and damping the wind noise that’s been a longtime challenge for car designers. Lexus says the cameras and interior monitors deliver better visibility in foul weather, with the lenses heated and tucked into housings to ward off raindrops, ice, or snow. Drivers can adjust screen perspectives, or the camera can automatically adjust— zooming in when drivers hit their turn signals, or highlighting and alerting to cars that loom in blind spots.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

The EV Transition Explained: Can the Grid Cope?

Palo Alto offers a glimpse at the challenges municipalities and utilities face

8 min read
A man plugging a charger into an outlet

Enel’s JuiceBox 240-volt Level 2 charger for electric vehicles.

Enel X Way USA

There have been vigorous debates pro and con in the United States and elsewhere over whether electric grids can support EVs at scale. The answer is a nuanced “perhaps.” It depends on several factors, including the speed of grid-component modernization, the volume of EV sales, where they occur and when, what kinds of EV charging are being done and when, regulator and political decisions, and critically, economics.

The city of Palo Alto, Calif. is a microcosm of many of the issues involved. Palo Alto boasts the highest adoption rate of EVs in the United States: In 2020, one in six of the town’s 25,000 households owned an EV. Of the 52,000 registered vehicles in the city, 4,500 are EVs, and on workdays, commuters drive another 3,000 to 5,000 EVs to enter the city. Residents can access about 1,000 charging ports spread over 277 public charging stations, with another 3,500 or so charging ports located at residences.

Keep Reading ↓Show less

The James Webb Space Telescope was a Career-Defining Project for Janet Barth

NASA’s first female engineering chief was there from conception to first light

5 min read
portrait of older woman in light blue jacket against dark gray background Info for editor if needed:
Sue Brown

Janet Barth spent most of her career at the Goddard Space Flight Center, in Greenbelt, Md.—which put her in the middle of some of NASA’s most exciting projects of the past 40 years.

She joined the center as a co-op student and retired in 2014 as chief of its electrical engineering division. She had a hand in Hubble Space Telescope servicing missions, launching the Lunar Reconnaissance Orbiter and the Magnetospheric Multiscale mission, and developing the James Webb Space Telescope.

Keep Reading ↓Show less

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less