The December 2022 issue of IEEE Spectrum is here!

Close bar
Photo: Lamborghini
Photo: Lamborghini

This Year’s
Winning Autos

The tale of the Lamborghini Aventador SVJ is an inspiring story of endeavor, failure, and perseverance. Back in 2011, the original Aventador seemed as powerful and fantastical as a Klingon warship—it’s a Lamborghini, after all—but it had no real business on a racetrack. Its successor, the Aventador SVJ, has evolved into the fastest production car ever tested on Germany’s benchmark, the 20.8-kilometer Nürburgring circuit.

My own scorching introduction takes place at Circuito do Estoril, the former home of Formula 1’s Portuguese Grand Prix, where the SVJ escorts me to 280 km/h (174 mph) on a long straightaway, blowing my mind along the way. The sheer speed isn’t surprising, considering the 6.5-liter V-12, with its 566 kilowatts (759 horses). Rather, it’s the way the Lambo lets drivers access that power with gains in balance and stability.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Rory Cooper’s Wheelchair Tech Makes the World More Accessible

He has introduced customized controls and builds wheelchairs for rough terrain

6 min read
portrait of a man in a navy blue polo with greenery in the background
Abigail Albright

For more than 25 years, Rory Cooper has been developing technology to improve the lives of people with disabilities.

Cooper began his work after a spinal cord injury in 1980 left him paralyzed from the waist down. First he modified the back brace he was required to wear. He then turned to building a better wheelchair and came up with an electric-powered version that helped its user stand up. He eventually discovered biomedical engineering and was inspired to focus his career on developing assistive technology. His inventions have helped countless wheelchair users get around with more ease and comfort.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Intel’s Take on the Next Wave of Moore’s Law

Ann B. Kelleher explains what's new 75 years after the transistor's invention

4 min read
image of a black and gold computer chip against a black background

Intel's Ponte Vecchio processor

Intel

The next wave of Moore’s Law will rely on a developing concept called system technology co-optimization, Ann B. Kelleher, general manager of technology development at Intel told IEEE Spectrum in an interview ahead of her plenary talk at the 2022 IEEE Electron Device Meeting.

“Moore’s Law is about increasing the integration of functions,” says Kelleher. “As we look forward into the next 10 to 20 years, there’s a pipeline full of innovation” that will continue the cadence of improved products every two years. That path includes the usual continued improvements in semiconductor processes and design, but system technology co-optimization (STCO) will make the biggest difference.

Keep Reading ↓Show less
{"imageShortcodeIds":[]}

Solving Automotive Design Challenges With Simulation

Learn about low-frequency electromagnetic simulations and see a live demonstration of COMSOL Multiphysics software

1 min read

The development of new hybrid and battery electric vehicles introduces numerous design challenges. Many of these challenges are static or low-frequency electromagnetic by nature, as the devices involved in such designs are much smaller than the operating wavelength. Examples include sensors (such as MEMS sensors), transformers, and motors. Many of these challenges include multiple physics. For instance, sensors activated by acoustic energy as well as heat transfer in electric motors and power electronics combine low-frequency electromagnetic simulations with acoustic and heat transfer simulations, respectively.

Multiphysics simulation makes it possible to account for such phenomena in designs and can provide design engineers with the tools needed for developing products more effectively and optimizing device performance.

Keep Reading ↓Show less