The July 2022 issue of IEEE Spectrum is here!

Close bar
Cadillac CT6
It’s Two-Thirds Aluminum: The Cadillac CT6 is long yet light, and it’s packed with energy-saving technology.
Photo: General Motors Co.

American luxury sedans were once dismissed, often rightly, as lumbering land yachts. But Cadillac has honed its reputation with assassins like the 477-kilowatt (640-horsepower) CTS-V, and now it has applied the same thinking to its flagship sedan. Yes, the CT6 has a street presence that stretches to nearly 5.2 meters (17 feet), which is longer than many SUVs. But remarkably, this Caddy is lighter than a Mercedes S550 by some 450 kilograms (1,000 pounds).

This Year’s
Winning Autos

The advanced Omega chassis uses 11 different materials to lose those pounds, including aluminum castings that, viewed in a cutaway model, look like computer-modeled works of art. The 13 castings dramatically reduce the number of connection points in the ultrarigid chassis, each a potential stress point: Instead of 35 stamped parts in the structure, now there are only two. Throw in aluminum body panels and nearly two-thirds of the Caddy, by weight, is formed from the lightweight metal.

Keep reading...Show less

This article is for IEEE members only. Join IEEE to access our full archive.

Join the world’s largest professional organization devoted to engineering and applied sciences and get access to all of Spectrum’s articles, podcasts, and special reports. Learn more →

If you're already an IEEE member, please sign in to continue reading.

Membership includes:

  • Get unlimited access to IEEE Spectrum content
  • Follow your favorite topics to create a personalized feed of IEEE Spectrum content
  • Save Spectrum articles to read later
  • Network with other technology professionals
  • Establish a professional profile
  • Create a group to share and collaborate on projects
  • Discover IEEE events and activities
  • Join and participate in discussions

Quantum Computing for Dummies

New guide helps beginners run quantum algorithms on IBM's quantum computers over the cloud

3 min read
An image of the inside of an IBM quantum computer.
IBM

Quantum computers may one day rapidly find solutions to problems no regular computer might ever hope to solve, but there are vanishingly few quantum programmers when compared with the number of conventional programmers in the world. Now a new beginner's guide aims to walk would-be quantum programmers through the implementation of quantum algorithms over the cloud on IBM's publicly available quantum computers.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits, or "qubits," which because of the peculiar nature of quantum physics can exist in a state called superposition where they are both 1 and 0 at the same time. This essentially lets each qubit perform two calculations at once. The more qubits are quantum-mechanically linked, or entangled (see our explainer), within a quantum computer, the greater its computational power can grow, in an exponential fashion.

Keep Reading ↓Show less

This Wearable Neck Patch Can Diagnose Concussions

Self-powered sensors convert neck strain into electrical pulses to detect head trauma in athletes

4 min read
image of back of man's head and shoulders with a patch taped to his lower neck; right image is a time lapse image of a man's head extending far forward and back, simulating a case of whiplash

The prototype patch in this research is shown in (a) on the left; on the right (b) is the kind of head rotation that can yield an electrical response from the patch.

Juan Pastrana

Nelson Sepúlveda was sitting in the stands at Spartan Stadium, watching his hometown Michigan State players bash heads with their cross-state football rivals from the University of Michigan, when he had a scientific epiphany.

Perhaps the nanotechnologies he had been working on for years—paper-thin devices known as ferroelectret nanogenerators that convert mechanical energy into electrical energy—could help save these athletes from the ravages of traumatic brain injury.

Keep Reading ↓Show less

Electromagnetic Simulations in Automotive Industry

Learn how an electromagnetic simulator can be applied to various scenarios in the automotive industry

1 min read
WIPL-D Logo
WIPL-D

This whitepaper shows several examples of how WIPL-D electromagnetic simulator can be applied to various scenarios in the automotive industry: a radar antenna mounted on a car bumper operating at 24 GHz, 40 GHz, and 77 GHz, an EM obstacle detection at 77 GHz, and vehicle-to-vehicle communication at 5.9 GHz. Download this free whitepaper now!